Free Solved Question Paper of BCS012 - Mathematics for Decemeber 2023 Hey there! Welcome to KnowledgeKnot! Don't forget to share this with your friends and revisit often. Your support motivates us to create more content in the future. Thanks for being awesome!
1. (a) Show that:∣ b − c c − a a − b c − a a − b b − c a − b b − c c − a ∣ = 0 \begin{vmatrix}b - c & c - a & a - b \\ c - a & a - b & b - c \\ a - b & b - c & c - a \end{vmatrix} = 0 b − c c − a a − b c − a a − b b − c a − b b − c c − a = 0 Solution :
To show that the given determinant is zero, we will expand it using cofactor expansion along the first row:
Det = ( b − c ) ∣ a − b b − c b − c c − a ∣ − ( c − a ) ∣ c − a b − c a − b c − a ∣ + ( a − b ) ∣ c − a a − b a − b b − c ∣ \text{Det} = (b-c) \begin{vmatrix} a-b & b-c \\ b-c & c-a \end{vmatrix} - (c-a) \begin{vmatrix} c-a & b-c \\ a-b & c-a \end{vmatrix} + (a-b) \begin{vmatrix} c-a & a-b \\ a-b & b-c \end{vmatrix} Det = ( b − c ) a − b b − c b − c c − a − ( c − a ) c − a a − b b − c c − a + ( a − b ) c − a a − b a − b b − c Let's expand each 2x2 determinant:
∣ a − b b − c b − c c − a ∣ = ( a − b ) ( c − a ) − ( b − c ) ( b − c ) = a c − a 2 − b 2 + b c \begin{vmatrix} a-b & b-c \\ b-c & c-a \end{vmatrix} = (a-b)(c-a) - (b-c)(b-c) = ac - a^2 - b^2 + bc a − b b − c b − c c − a = ( a − b ) ( c − a ) − ( b − c ) ( b − c ) = a c − a 2 − b 2 + b c ∣ c − a b − c a − b c − a ∣ = ( c − a ) ( c − a ) − ( b − c ) ( a − b ) = c 2 − a c − a b + b 2 \begin{vmatrix} c-a & b-c \\ a-b & c-a \end{vmatrix} = (c-a)(c-a) - (b-c)(a-b) = c^2 - ac - ab + b^2 c − a a − b b − c c − a = ( c − a ) ( c − a ) − ( b − c ) ( a − b ) = c 2 − a c − ab + b 2 ∣ c − a a − b a − b b − c ∣ = ( c − a ) ( b − c ) − ( a − b ) ( a − b ) = c b − c 2 − a 2 + a b \begin{vmatrix} c-a & a-b \\ a-b & b-c \end{vmatrix} = (c-a)(b-c) - (a-b)(a-b) = cb - c^2 - a^2 + ab c − a a − b a − b b − c = ( c − a ) ( b − c ) − ( a − b ) ( a − b ) = c b − c 2 − a 2 + ab Substituting these back into the original equation:
Det = ( b − c ) ( a c − a 2 − b 2 + b c ) − ( c − a ) ( c 2 − a c − a b + b 2 ) + ( a − b ) ( c b − c 2 − a 2 + a b ) \text{Det} = (b-c)(ac - a^2 - b^2 + bc) - (c-a)(c^2 - ac - ab + b^2) + (a-b)(cb - c^2 - a^2 + ab) Det = ( b − c ) ( a c − a 2 − b 2 + b c ) − ( c − a ) ( c 2 − a c − ab + b 2 ) + ( a − b ) ( c b − c 2 − a 2 + ab ) Simplify the expression:
= b a c − b a 2 − b 3 + b 2 c − c 2 a + a c 2 + a b c − b 2 c + a c b − a b c − c 3 + c 2 a + a 2 b − a b 2 − a 3 + a b 2 + a 2 c − a 2 b = bac - ba^2 - b^3 + b^2c - c^2a + ac^2 + abc - b^2c + acb - abc - c^3 + c^2a + a^2b - ab^2 - a^3 + ab^2 + a^2c - a^2b = ba c − b a 2 − b 3 + b 2 c − c 2 a + a c 2 + ab c − b 2 c + a c b − ab c − c 3 + c 2 a + a 2 b − a b 2 − a 3 + a b 2 + a 2 c − a 2 b Grouping like terms:
= b a c − b a 2 − b 3 + b 2 c − c 2 a + a c 2 + a c b − c 3 + a 2 b − a b 2 − a 3 + a 2 c = bac - ba^2 - b^3 + b^2c - c^2a + ac^2 + acb - c^3 + a^2b - ab^2 - a^3 + a^2c = ba c − b a 2 − b 3 + b 2 c − c 2 a + a c 2 + a c b − c 3 + a 2 b − a b 2 − a 3 + a 2 c After simplifying, we see that every term cancels out:
= 0 = 0 = 0 Thus, the determinant is zero.
1. (b) IfA = [ 2 3 − 1 2 ] A = \begin{bmatrix}2 & 3 \\ -1 & 2 \end{bmatrix} A = [ 2 − 1 3 2 ] and f ( x ) = x 2 − 4 x + 7 f(x) = x^2 - 4x + 7 f ( x ) = x 2 − 4 x + 7 , show that f ( A ) = O 2 × 2 f(A) = O_{2 \times 2} f ( A ) = O 2 × 2 . Use this result to find A 5 A^5 A 5 . Solution :
First, we need to find f ( A ) f(A) f ( A ) :
f ( A ) = A 2 − 4 A + 7 I f(A) = A^2 - 4A + 7I f ( A ) = A 2 − 4 A + 7 I Let's calculate A 2 A^2 A 2 :
A 2 = [ 2 3 − 1 2 ] [ 2 3 − 1 2 ] A^2 = \begin{bmatrix}2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix}2 & 3 \\ -1 & 2 \end{bmatrix} A 2 = [ 2 − 1 3 2 ] [ 2 − 1 3 2 ] = [ ( 2 ∗ 2 + 3 ∗ ( − 1 ) ) ( 2 ∗ 3 + 3 ∗ 2 ) ( − 1 ∗ 2 + 2 ∗ ( − 1 ) ) ( − 1 ∗ 3 + 2 ∗ 2 ) ] = \begin{bmatrix}(2*2 + 3*(-1)) & (2*3 + 3*2) \\ (-1*2 + 2*(-1)) & (-1*3 + 2*2) \end{bmatrix} = [ ( 2 ∗ 2 + 3 ∗ ( − 1 )) ( − 1 ∗ 2 + 2 ∗ ( − 1 )) ( 2 ∗ 3 + 3 ∗ 2 ) ( − 1 ∗ 3 + 2 ∗ 2 ) ] = [ 4 − 3 6 + 6 − 2 − 1 − 3 + 4 ] = \begin{bmatrix}4 - 3 & 6 + 6 \\ -2 - 1 & -3 + 4 \end{bmatrix} = [ 4 − 3 − 2 − 1 6 + 6 − 3 + 4 ] = [ 1 12 − 3 1 ] = \begin{bmatrix}1 & 12 \\ -3 & 1 \end{bmatrix} = [ 1 − 3 12 1 ] Next, we calculate 4 A 4A 4 A :
4 A = 4 [ 2 3 − 1 2 ] 4A = 4 \begin{bmatrix}2 & 3 \\ -1 & 2 \end{bmatrix} 4 A = 4 [ 2 − 1 3 2 ] = [ 8 12 − 4 8 ] = \begin{bmatrix}8 & 12 \\ -4 & 8 \end{bmatrix} = [ 8 − 4 12 8 ] Then, we have:
f ( A ) = A 2 − 4 A + 7 I f(A) = A^2 - 4A + 7I f ( A ) = A 2 − 4 A + 7 I = [ 1 12 − 3 1 ] − [ 8 12 − 4 8 ] + [ 7 0 0 7 ] = \begin{bmatrix}1 & 12 \\ -3 & 1 \end{bmatrix} - \begin{bmatrix}8 & 12 \\ -4 & 8 \end{bmatrix} + \begin{bmatrix}7 & 0 \\ 0 & 7 \end{bmatrix} = [ 1 − 3 12 1 ] − [ 8 − 4 12 8 ] + [ 7 0 0 7 ] = [ 1 − 8 + 7 12 − 12 + 0 − 3 + 4 + 0 1 − 8 + 7 ] = \begin{bmatrix}1 - 8 + 7 & 12 - 12 + 0 \\ -3 + 4 + 0 & 1 - 8 + 7 \end{bmatrix} = [ 1 − 8 + 7 − 3 + 4 + 0 12 − 12 + 0 1 − 8 + 7 ] = [ 0 0 0 0 ] = \begin{bmatrix}0 & 0 \\ 0 & 0 \end{bmatrix} = [ 0 0 0 0 ] So, f ( A ) = O 2 × 2 f(A) = O_{2 \times 2} f ( A ) = O 2 × 2 , as required.
Now, using this result, we can find A 5 A^5 A 5 . Since f ( A ) = O f(A) = O f ( A ) = O , we have:
A 2 = 4 A − 7 I A^2 = 4A - 7I A 2 = 4 A − 7 I We can use this to express higher powers of A A A . For A 3 A^3 A 3 :
A 3 = A ⋅ A 2 = A ( 4 A − 7 I ) = 4 A 2 − 7 A A^3 = A \cdot A^2 = A (4A - 7I) = 4A^2 - 7A A 3 = A ⋅ A 2 = A ( 4 A − 7 I ) = 4 A 2 − 7 A = 4 ( 4 A − 7 I ) − 7 A = 16 A − 28 I − 7 A = 9 A − 28 I = 4(4A - 7I) - 7A = 16A - 28I - 7A = 9A - 28I = 4 ( 4 A − 7 I ) − 7 A = 16 A − 28 I − 7 A = 9 A − 28 I Next, for A 4 A^4 A 4 :
A 4 = A ⋅ A 3 = A ( 9 A − 28 I ) = 9 A 2 − 28 A A^4 = A \cdot A^3 = A(9A - 28I) = 9A^2 - 28A A 4 = A ⋅ A 3 = A ( 9 A − 28 I ) = 9 A 2 − 28 A = 9 ( 4 A − 7 I ) − 28 A = 36 A − 63 I − 28 A = 8 A − 63 I = 9(4A - 7I) - 28A = 36A - 63I - 28A = 8A - 63I = 9 ( 4 A − 7 I ) − 28 A = 36 A − 63 I − 28 A = 8 A − 63 I Finally, for A 5 A^5 A 5 :
A 5 = A ⋅ A 4 = A ( 8 A − 63 I ) = 8 A 2 − 63 A A^5 = A \cdot A^4 = A(8A - 63I) = 8A^2 - 63A A 5 = A ⋅ A 4 = A ( 8 A − 63 I ) = 8 A 2 − 63 A = 8 ( 4 A − 7 I ) − 63 A = 32 A − 56 I − 63 A = − 31 A − 56 I = 8(4A - 7I) - 63A = 32A - 56I - 63A = -31A - 56I = 8 ( 4 A − 7 I ) − 63 A = 32 A − 56 I − 63 A = − 31 A − 56 I Therefore, A 5 = − 31 A − 56 I A^5 = -31A - 56I A 5 = − 31 A − 56 I .
1. (c) Show that 7 divides2 3 n − 1 ∀ n ∈ N 2^{3n} - 1 \forall n \in \mathbb{N} 2 3 n − 1∀ n ∈ N . Solution :
We need to show that 2 3 n − 1 2^{3n} - 1 2 3 n − 1 is divisible by 7 for all natural numbers n n n .
We will use mathematical induction.
Base Case:
For n = 1 n = 1 n = 1 :
2 3 ⋅ 1 − 1 = 2 3 − 1 = 8 − 1 = 7 2^{3 \cdot 1} - 1 = 2^3 - 1 = 8 - 1 = 7 2 3 ⋅ 1 − 1 = 2 3 − 1 = 8 − 1 = 7 7 is divisible by 7, so the base case holds.
Inductive Step:
Assume that for some k ∈ N k \in \mathbb{N} k ∈ N , 2 3 k − 1 2^{3k} - 1 2 3 k − 1 is divisible by 7.
This means 2 3 k − 1 = 7 m 2^{3k} - 1 = 7m 2 3 k − 1 = 7 m for some integer m m m .
We need to show that 2 3 ( k + 1 ) − 1 2^{3(k+1)} - 1 2 3 ( k + 1 ) − 1 is divisible by 7.
2 3 ( k + 1 ) − 1 = 2 3 k + 3 − 1 = 2 3 k ⋅ 2 3 − 1 = 8 ⋅ 2 3 k − 1 2^{3(k+1)} - 1 = 2^{3k + 3} - 1 = 2^{3k} \cdot 2^3 - 1 = 8 \cdot 2^{3k} - 1 2 3 ( k + 1 ) − 1 = 2 3 k + 3 − 1 = 2 3 k ⋅ 2 3 − 1 = 8 ⋅ 2 3 k − 1 Using the inductive hypothesis:
8 ⋅ 2 3 k − 1 = 8 ( 7 m + 1 ) − 1 = 56 m + 8 − 1 = 56 m + 7 8 \cdot 2^{3k} - 1 = 8(7m + 1) - 1 = 56m + 8 - 1 = 56m + 7 8 ⋅ 2 3 k − 1 = 8 ( 7 m + 1 ) − 1 = 56 m + 8 − 1 = 56 m + 7 This can be factored as:
56 m + 7 = 7 ( 8 m + 1 ) 56m + 7 = 7(8m + 1) 56 m + 7 = 7 ( 8 m + 1 ) Since 7 ( 8 m + 1 ) 7(8m + 1) 7 ( 8 m + 1 ) is clearly divisible by 7, the inductive step holds.
Thus, by the principle of mathematical induction, 7 divides 2 3 n − 1 2^{3n} - 1 2 3 n − 1 for all n ∈ N n \in \mathbb{N} n ∈ N .
1. (d) If 1 , ω , ω 2 1, \omega, \omega^2 1 , ω , ω 2 are cube roots of unity, show that:( 1 + ω ) ( 1 + ω 2 ) ( 1 + ω 3 ) ( 1 + ω 4 ) ( 1 + ω 6 ) + ( 1 + ω 8 ) = 4 (1 + \omega)(1 + \omega^2)(1 + \omega^3)(1 + \omega^4)(1 + \omega^6) + (1 + \omega^8) = 4 ( 1 + ω ) ( 1 + ω 2 ) ( 1 + ω 3 ) ( 1 + ω 4 ) ( 1 + ω 6 ) + ( 1 + ω 8 ) = 4 .
Solution :
Given that 1 , ω , ω 2 1, \omega, \omega^2 1 , ω , ω 2 are cube roots of unity, we know that:
ω 3 = 1 \omega^3 = 1 ω 3 = 1 and 1 + ω + ω 2 = 0 1 + \omega + \omega^2 = 0 1 + ω + ω 2 = 0 .
To prove: ( 1 + ω ) ( 1 + ω 2 ) ( 1 + ω 3 ) ( 1 + ω 4 ) ( 1 + ω 6 ) + ( 1 + ω 8 ) = 4 (1 + \omega)(1 + \omega^2)(1 + \omega^3)(1 + \omega^4)(1 + \omega^6) + (1 + \omega^8) = 4 ( 1 + ω ) ( 1 + ω 2 ) ( 1 + ω 3 ) ( 1 + ω 4 ) ( 1 + ω 6 ) + ( 1 + ω 8 ) = 4 .
Notice that ω 3 = 1 , ω 6 = 1 \omega^3 = 1 \text{, } \omega^6 = 1 ω 3 = 1 , ω 6 = 1 and ω 8 = ω 2 \omega^8 = \omega^2 ω 8 = ω 2 .
From L.H.S,
( 1 + ω ) ( 1 + ω 2 ) ( 1 + ω 3 ) ( 1 + ω 4 ) ( 1 + ω 6 ) + ( 1 + ω 8 ) (1 + \omega)(1 + \omega^2)(1 + \omega^3)(1 + \omega^4)(1 + \omega^6) + (1 + \omega^8) ( 1 + ω ) ( 1 + ω 2 ) ( 1 + ω 3 ) ( 1 + ω 4 ) ( 1 + ω 6 ) + ( 1 + ω 8 )
= ( 1 + ω ) ( 1 + ω 2 ) ( 1 + 1 ) ( 1 + ω ) ( 1 + 1 ) + ( 1 + ω 2 ) = (1 + \omega)(1 + \omega^2)(1 + 1)(1 + \omega)(1 + 1) + (1 + \omega^2) = ( 1 + ω ) ( 1 + ω 2 ) ( 1 + 1 ) ( 1 + ω ) ( 1 + 1 ) + ( 1 + ω 2 ) .
= 4 ( 1 + ω ) ( 1 + ω 2 ) ( 1 + ω ) ( 1 + ω 2 ) = 4 (1 + \omega)(1 + \omega^2)(1 + \omega) (1 + \omega^2) = 4 ( 1 + ω ) ( 1 + ω 2 ) ( 1 + ω ) ( 1 + ω 2 ) .
= 4 [ ( 1 + ω ) ( 1 + ω 2 ) ] 2 = 4 [(1 + \omega)(1 + \omega^2)]^2 = 4 [( 1 + ω ) ( 1 + ω 2 ) ] 2 .
= 4 [ 1 + ω 2 + ω + ω 3 ] 2 = 4 [1 + \omega^2 + \omega + \omega^3]^2 = 4 [ 1 + ω 2 + ω + ω 3 ] 2 .
= 4 [ 0 + 1 ] 2 = 4 [0 + 1]^2 = 4 [ 0 + 1 ] 2 .
= 4 × 1 = 4 \times 1 = 4 × 1 .
= 4 = 4 = 4 .
= R.H.S Proved1. (e) If y = a e m x + b e − m x + 4 y = ae^{mx} + be^{-mx} + 4 y = a e m x + b e − m x + 4 , show that: d 2 y d x 2 = m 2 ( y − 4 ) \frac{d^2y}{dx^2} = m^2(y - 4) d x 2 d 2 y = m 2 ( y − 4 ) Solution :
Given:
y = a e m x + b e − m x + 4 y = ae^{mx} + be^{-mx} + 4 y = a e m x + b e − m x + 4 First, we find the first derivative of y y y with respect to x x x :
d y d x = d d x ( a e m x + b e − m x + 4 ) \frac{dy}{dx} = \frac{d}{dx}(ae^{mx} + be^{-mx} + 4) d x d y = d x d ( a e m x + b e − m x + 4 ) d y d x = a d d x ( e m x ) + b d d x ( e − m x ) + d d x ( 4 ) \frac{dy}{dx} = a \frac{d}{dx}(e^{mx}) + b \frac{d}{dx}(e^{-mx}) + \frac{d}{dx}(4) d x d y = a d x d ( e m x ) + b d x d ( e − m x ) + d x d ( 4 ) d y d x = a ( m e m x ) + b ( − m e − m x ) + 0 \frac{dy}{dx} = a(me^{mx}) + b(-m e^{-mx}) + 0 d x d y = a ( m e m x ) + b ( − m e − m x ) + 0 d y d x = a m e m x − b m e − m x \frac{dy}{dx} = ame^{mx} - bme^{-mx} d x d y = am e m x − bm e − m x Next, we find the second derivative of y y y with respect to x x x :
d 2 y d x 2 = d d x ( a m e m x − b m e − m x ) \frac{d^2y}{dx^2} = \frac{d}{dx}(ame^{mx} - bme^{-mx}) d x 2 d 2 y = d x d ( am e m x − bm e − m x ) d 2 y d x 2 = a m d d x ( e m x ) − b m d d x ( e − m x ) \frac{d^2y}{dx^2} = am \frac{d}{dx}(e^{mx}) - bm \frac{d}{dx}(e^{-mx}) d x 2 d 2 y = am d x d ( e m x ) − bm d x d ( e − m x ) d 2 y d x 2 = a m ( m e m x ) − b m ( − m e − m x ) \frac{d^2y}{dx^2} = am(me^{mx}) - bm(-me^{-mx}) d x 2 d 2 y = am ( m e m x ) − bm ( − m e − m x ) d 2 y d x 2 = a m 2 e m x + b m 2 e − m x \frac{d^2y}{dx^2} = am^2e^{mx} + bm^2e^{-mx} d x 2 d 2 y = a m 2 e m x + b m 2 e − m x We can factor out m 2 m^2 m 2 from the second derivative:
d 2 y d x 2 = m 2 ( a e m x + b e − m x ) \frac{d^2y}{dx^2} = m^2(ae^{mx} + be^{-mx}) d x 2 d 2 y = m 2 ( a e m x + b e − m x ) Since y = a e m x + b e − m x + 4 y = ae^{mx} + be^{-mx} + 4 y = a e m x + b e − m x + 4 , we can substitute back a e m x + b e − m x ae^{mx} + be^{-mx} a e m x + b e − m x :
d 2 y d x 2 = m 2 ( y − 4 ) \frac{d^2y}{dx^2} = m^2(y - 4) d x 2 d 2 y = m 2 ( y − 4 ) Therefore, we have shown that:
d 2 y d x 2 = m 2 ( y − 4 ) \frac{d^2y}{dx^2} = m^2(y - 4) d x 2 d 2 y = m 2 ( y − 4 ) 1. (f) If α , β \alpha, \beta α , β are roots of 2 x 2 − 2 k x + k 2 − 1 = 0 2x^2 - 2kx + k^2 - 1 = 0 2 x 2 − 2 k x + k 2 − 1 = 0 and α 2 + β 2 = 10 \alpha^2 + \beta^2 = 10 α 2 + β 2 = 10 , find k k k . Solution :
Given the quadratic equation:
2 x 2 − 2 k x + k 2 − 1 = 0 2x^2 - 2kx + k^2 - 1 = 0 2 x 2 − 2 k x + k 2 − 1 = 0 We know that if α \alpha α and β \beta β are the roots, we can use Vieta's formulas:
Sum of the roots:
α + β = 2 k 2 = k \alpha + \beta = \frac{2k}{2} = k α + β = 2 2 k = k Product of the roots:
α β = k 2 − 1 2 \alpha \beta = \frac{k^2 - 1}{2} α β = 2 k 2 − 1 We are also given:
α 2 + β 2 = 10 \alpha^2 + \beta^2 = 10 α 2 + β 2 = 10 We can express α 2 + β 2 \alpha^2 + \beta^2 α 2 + β 2 in terms of the sum and product of the roots:
α 2 + β 2 = ( α + β ) 2 − 2 α β \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta α 2 + β 2 = ( α + β ) 2 − 2 α β Substitute the values from Vieta's formulas:
10 = k 2 − 2 ( k 2 − 1 2 ) 10 = k^2 - 2 \left( \frac{k^2 - 1}{2} \right) 10 = k 2 − 2 ( 2 k 2 − 1 ) Simplify the equation:
10 = k 2 − ( k 2 − 1 ) 10 = k^2 - (k^2 - 1) 10 = k 2 − ( k 2 − 1 ) 10 = 1 10 = 1 10 = 1 k 2 = 11 k^2 = 11 k 2 = 11 k = ± 11 k = \pm \sqrt{11} k = ± 11 Therefore, the values of k k k are:
k = 11 k = \sqrt{11} k = 11 or k = − 11 k = -\sqrt{11} k = − 11 1. (g) Find the value ofλ \lambda λ for which the vectors:a ⃗ = 2 i ^ − 4 j ^ + 3 k ^ \vec{a} = 2\hat{i} - 4\hat{j} + 3\hat{k} a = 2 i ^ − 4 j ^ + 3 k ^ ,b ⃗ = λ i ^ − j ^ + k ^ \vec{b} = \lambda \hat{i} - \hat{j} + \hat{k} b = λ i ^ − j ^ + k ^ , andc ⃗ = 2 i ^ + 3 j ^ + 3 k ^ \vec{c} = 2\hat{i} + 3\hat{j} + 3\hat{k} c = 2 i ^ + 3 j ^ + 3 k ^ are coplanar. Solution :
To find the value of λ \lambda λ for which the vectors a ⃗ = 2 i ^ − 4 j ^ + 3 k ^ \vec{a} = 2\hat{i} - 4\hat{j} + 3\hat{k} a = 2 i ^ − 4 j ^ + 3 k ^ , b ⃗ = λ i ^ − j ^ + k ^ \vec{b} = \lambda \hat{i} - \hat{j} + \hat{k} b = λ i ^ − j ^ + k ^ , and c ⃗ = 2 i ^ + 3 j ^ + 3 k ^ \vec{c} = 2\hat{i} + 3\hat{j} + 3\hat{k} c = 2 i ^ + 3 j ^ + 3 k ^ are coplanar, we need to check the condition of their scalar triple product being zero.
The scalar triple product of vectors a ⃗ \vec{a} a , b ⃗ \vec{b} b , and c ⃗ \vec{c} c is given by a ⃗ ⋅ ( b ⃗ × c ⃗ ) \vec{a} \cdot (\vec{b} \times \vec{c}) a ⋅ ( b × c ) . If this product is zero, the vectors are coplanar.
Let's calculate the cross product b ⃗ × c ⃗ \vec{b} \times \vec{c} b × c :
b ⃗ × c ⃗ = ∣ i ^ j ^ k ^ λ − 1 1 2 3 3 ∣ = i ^ ( ( − 1 ) ( 3 ) − ( 1 ) ( 3 ) ) − j ^ ( ( λ ) ( 3 ) − ( 1 ) ( 2 ) ) + k ^ ( ( λ ) ( 3 ) − ( ( − 1 ) ( 2 ) ) ) = i ^ ( − 3 − 3 ) − j ^ ( 3 λ − 2 ) + k ^ ( 3 λ + 2 ) = − 6 i ^ − ( 3 λ − 2 ) j ^ + ( 3 λ + 2 ) k ^ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \lambda & -1 & 1 \\ 2 & 3 & 3 \end{vmatrix} = \hat{i}((-1)(3) - (1)(3)) - \hat{j}((\lambda)(3) - (1)(2)) + \hat{k}((\lambda)(3) - ((-1)(2))) = \hat{i}(-3 - 3) - \hat{j}(3\lambda - 2) + \hat{k}(3\lambda + 2) = -6\hat{i} - (3\lambda - 2)\hat{j} + (3\lambda + 2)\hat{k} b × c = i ^ λ 2 j ^ − 1 3 k ^ 1 3 = i ^ (( − 1 ) ( 3 ) − ( 1 ) ( 3 )) − j ^ (( λ ) ( 3 ) − ( 1 ) ( 2 )) + k ^ (( λ ) ( 3 ) − (( − 1 ) ( 2 ))) = i ^ ( − 3 − 3 ) − j ^ ( 3 λ − 2 ) + k ^ ( 3 λ + 2 ) = − 6 i ^ − ( 3 λ − 2 ) j ^ + ( 3 λ + 2 ) k ^
Now, let's find the dot product of a ⃗ \vec{a} a with b ⃗ × c ⃗ \vec{b} \times \vec{c} b × c :
a ⃗ ⋅ ( b ⃗ × c ⃗ ) = ( 2 i ^ − 4 j ^ + 3 k ^ ) ⋅ ( − 6 i ^ − ( 3 λ − 2 ) j ^ + ( 3 λ + 2 ) k ^ ) = 2 ( − 6 ) + ( − 4 ) ( 3 λ − 2 ) + 3 ( 3 λ + 2 ) = − 12 − 12 λ + 8 + 9 λ + 6 = − 12 λ + 9 λ + 2 = − 3 λ + 2 \vec{a} \cdot (\vec{b} \times \vec{c}) = (2\hat{i} - 4\hat{j} + 3\hat{k}) \cdot (-6\hat{i} - (3\lambda - 2)\hat{j} + (3\lambda + 2)\hat{k}) = 2(-6) + (-4)(3\lambda - 2) + 3(3\lambda + 2) = -12 - 12\lambda + 8 + 9\lambda + 6 = -12\lambda + 9\lambda + 2 = -3\lambda + 2 a ⋅ ( b × c ) = ( 2 i ^ − 4 j ^ + 3 k ^ ) ⋅ ( − 6 i ^ − ( 3 λ − 2 ) j ^ + ( 3 λ + 2 ) k ^ ) = 2 ( − 6 ) + ( − 4 ) ( 3 λ − 2 ) + 3 ( 3 λ + 2 ) = − 12 − 12 λ + 8 + 9 λ + 6 = − 12 λ + 9 λ + 2 = − 3 λ + 2
For the vectors to be coplanar, a ⃗ ⋅ ( b ⃗ × c ⃗ ) \vec{a} \cdot (\vec{b} \times \vec{c}) a ⋅ ( b × c ) must be zero:
− 3 λ + 2 = 0 -3\lambda + 2 = 0 − 3 λ + 2 = 0
Solving for λ \lambda λ :
− 3 λ = − 2 λ = 2 3 -3\lambda = -2 \\ \lambda = \frac{2}{3} − 3 λ = − 2 λ = 3 2
Therefore, the value of λ \lambda λ for which the vectors are coplanar is 2 3 \frac{2}{3} 3 2 .
1. (h) Find the angle between the pair of lines:x − 5 2 = y − 3 3 = z − 1 − 3 \frac{x - 5}{2} = \frac{y - 3}{3} = \frac{z - 1}{-3} 2 x − 5 = 3 y − 3 = − 3 z − 1 andx 3 = y − 1 2 = z + 5 − 3 \frac{x}{3} = \frac{y - 1}{2} = \frac{z + 5}{-3} 3 x = 2 y − 1 = − 3 z + 5 . Solution :
To find the angle between two lines in 3D space, we can use the direction vectors of the lines and the formula for the angle between two vectors.
CopyStep 1: Identify the direction vectors of the lines.
For the first line: a ⃗ = ( 2 , 3 , − 3 ) \vec{a} = (2, 3, -3) a = ( 2 , 3 , − 3 )
For the second line: b ⃗ = ( 3 , 2 , − 3 ) \vec{b} = (3, 2, -3) b = ( 3 , 2 , − 3 )
Step 2: Use the formula for the angle between two vectors:
cos θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} cos θ = ∣ a ∣∣ b ∣ a ⋅ b
Step 3: Calculate the dot product a ⃗ ⋅ b ⃗ \vec{a} \cdot \vec{b} a ⋅ b :
a ⃗ ⋅ b ⃗ = 2 ( 3 ) + 3 ( 2 ) + ( − 3 ) ( − 3 ) = 6 + 6 + 9 = 21 \vec{a} \cdot \vec{b} = 2(3) + 3(2) + (-3)(-3) = 6 + 6 + 9 = 21 a ⋅ b = 2 ( 3 ) + 3 ( 2 ) + ( − 3 ) ( − 3 ) = 6 + 6 + 9 = 21
Step 4: Calculate the magnitudes of the vectors:
∣ a ⃗ ∣ = 2 2 + 3 2 + ( − 3 ) 2 = 4 + 9 + 9 = 22 |\vec{a}| = \sqrt{2^2 + 3^2 + (-3)^2} = \sqrt{4 + 9 + 9} = \sqrt{22} ∣ a ∣ = 2 2 + 3 2 + ( − 3 ) 2 = 4 + 9 + 9 = 22
∣ b ⃗ ∣ = 3 2 + 2 2 + ( − 3 ) 2 = 9 + 4 + 9 = 22 |\vec{b}| = \sqrt{3^2 + 2^2 + (-3)^2} = \sqrt{9 + 4 + 9} = \sqrt{22} ∣ b ∣ = 3 2 + 2 2 + ( − 3 ) 2 = 9 + 4 + 9 = 22
Step 5: Substitute into the formula:
cos θ = 21 22 ⋅ 22 = 21 22 \cos \theta = \frac{21}{\sqrt{22} \cdot \sqrt{22}} = \frac{21}{22} cos θ = 22 ⋅ 22 21 = 22 21
Step 6: Solve for θ:
θ = arccos ( 21 22 ) ≈ 0.3218 radians \theta = \arccos(\frac{21}{22}) \approx 0.3218 \text{ radians} θ = arccos ( 22 21 ) ≈ 0.3218 radians
Step 7: Convert to degrees (optional):
θ ≈ 0.3218 ⋅ 180 ° π ≈ 18.44 ° \theta \approx 0.3218 \cdot \frac{180°}{\pi} \approx 18.44° θ ≈ 0.3218 ⋅ π 180° ≈ 18.44°
Therefore, the angle between the two lines is approximately 18.44° or 0.3218 radians.
2. (a) Solve the following set of linear equations by using matrix inverse:3 x + 4 y + 7 z = − 2 3x + 4y + 7z = -2 3 x + 4 y + 7 z = − 2 2 x − y + 3 z = 6 2x - y + 3z = 6 2 x − y + 3 z = 6 2 x + 2 y − 3 z = 0 2x + 2y - 3z = 0 2 x + 2 y − 3 z = 0 . Solution :
The given equations are:
3 x + 4 y + 7 z = − 2 3x + 4y + 7z = -2 3 x + 4 y + 7 z = − 2 2 x − y + 3 z = 6 2x - y + 3z = 6 2 x − y + 3 z = 6 2 x + 2 y − 3 z = 0 2x + 2y - 3z = 0 2 x + 2 y − 3 z = 0
We can write this system as a matrix equation:
( 3 4 7 2 − 1 3 2 2 − 3 ) ( x y z ) = ( − 2 6 0 ) \begin{pmatrix} 3 & 4 & 7 \\ 2 & -1 & 3 \\ 2 & 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} 3 2 2 4 − 1 2 7 3 − 3 x y z = − 2 6 0
Let A = ( 3 4 7 2 − 1 3 2 2 − 3 ) A = \begin{pmatrix} 3 & 4 & 7 \\ 2 & -1 & 3 \\ 2 & 2 & -3 \end{pmatrix} A = 3 2 2 4 − 1 2 7 3 − 3 , X = ( x y z ) X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} X = x y z , and B = ( − 2 6 0 ) B = \begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} B = − 2 6 0 .
To find X X X , we use the matrix inverse of A A A , denoted as A − 1 A^{-1} A − 1 :
X = A − 1 B X = A^{-1}B X = A − 1 B
First, we need to calculate the inverse of matrix A A A . The inverse of a matrix A A A is given by:
A − 1 = 1 det ( A ) adj ( A ) A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) A − 1 = det ( A ) 1 adj ( A )
Where det ( A ) \text{det}(A) det ( A ) is the determinant of A A A and adj ( A ) \text{adj}(A) adj ( A ) is the adjugate of A A A .
Let's calculate det ( A ) \text{det}(A) det ( A ) :
det ( A ) = ∣ 3 4 7 2 − 1 3 2 2 − 3 ∣ = 3 ∣ − 1 3 2 − 3 ∣ − 4 ∣ 2 3 2 − 3 ∣ + 7 ∣ 2 − 1 2 2 ∣ \text{det}(A) = \begin{vmatrix} 3 & 4 & 7 \\ 2 & -1 & 3 \\ 2 & 2 & -3 \end{vmatrix} = 3 \begin{vmatrix} -1 & 3 \\ 2 & -3 \end{vmatrix} - 4 \begin{vmatrix} 2 & 3 \\ 2 & -3 \end{vmatrix} + 7 \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} det ( A ) = 3 2 2 4 − 1 2 7 3 − 3 = 3 − 1 2 3 − 3 − 4 2 2 3 − 3 + 7 2 2 − 1 2
∣ − 1 3 2 − 3 ∣ = ( − 1 ) ( − 3 ) − ( 3 ) ( 2 ) = 3 − 6 = − 3 \begin{vmatrix} -1 & 3 \\ 2 & -3 \end{vmatrix} = (-1)(-3) - (3)(2) = 3 - 6 = -3 − 1 2 3 − 3 = ( − 1 ) ( − 3 ) − ( 3 ) ( 2 ) = 3 − 6 = − 3 ∣ 2 3 2 − 3 ∣ = ( 2 ) ( − 3 ) − ( 3 ) ( 2 ) = − 6 − 6 = − 12 \begin{vmatrix} 2 & 3 \\ 2 & -3 \end{vmatrix} = (2)(-3) - (3)(2) = -6 - 6 = -12 2 2 3 − 3 = ( 2 ) ( − 3 ) − ( 3 ) ( 2 ) = − 6 − 6 = − 12 ∣ 2 − 1 2 2 ∣ = ( 2 ) ( 2 ) − ( − 1 ) ( 2 ) = 4 + 2 = 6 \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} = (2)(2) - (-1)(2) = 4 + 2 = 6 2 2 − 1 2 = ( 2 ) ( 2 ) − ( − 1 ) ( 2 ) = 4 + 2 = 6
det ( A ) = 3 ( − 3 ) − 4 ( − 12 ) + 7 ( 6 ) = − 9 + 48 + 42 = 81 \text{det}(A) = 3(-3) - 4(-12) + 7(6) = -9 + 48 + 42 = 81 det ( A ) = 3 ( − 3 ) − 4 ( − 12 ) + 7 ( 6 ) = − 9 + 48 + 42 = 81
Now, we need to find the adjugate of A A A , which is the transpose of the cofactor matrix of A A A .
The cofactor matrix of A A A is:
Cof ( A ) = ( ∣ − 1 3 2 − 3 ∣ − ∣ 2 3 2 − 3 ∣ ∣ 2 − 1 2 2 ∣ − ∣ 4 7 2 − 3 ∣ ∣ 3 7 2 − 3 ∣ − ∣ 3 4 2 2 ∣ ∣ 4 7 − 1 3 ∣ − ∣ 3 7 2 3 ∣ ∣ 3 4 2 − 1 ∣ ) \text{Cof}(A) = \begin{pmatrix} \begin{vmatrix} -1 & 3 \\ 2 & -3 \end{vmatrix} & -\begin{vmatrix} 2 & 3 \\ 2 & -3 \end{vmatrix} & \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} \\ -\begin{vmatrix} 4 & 7 \\ 2 & -3 \end{vmatrix} & \begin{vmatrix} 3 & 7 \\ 2 & -3 \end{vmatrix} & -\begin{vmatrix} 3 & 4 \\ 2 & 2 \end{vmatrix} \\ \begin{vmatrix} 4 & 7 \\ -1 & 3 \end{vmatrix} & -\begin{vmatrix} 3 & 7 \\ 2 & 3 \end{vmatrix} & \begin{vmatrix} 3 & 4 \\ 2 & -1 \end{vmatrix} \end{pmatrix} Cof ( A ) = − 1 2 3 − 3 − 4 2 7 − 3 4 − 1 7 3 − 2 2 3 − 3 3 2 7 − 3 − 3 2 7 3 2 2 − 1 2 − 3 2 4 2 3 2 4 − 1
Calculating each cofactor:
∣ 4 7 2 − 3 ∣ = ( 4 ) ( − 3 ) − ( 7 ) ( 2 ) = − 12 − 14 = − 26 \begin{vmatrix} 4 & 7 \\ 2 & -3 \end{vmatrix} = (4)(-3) - (7)(2) = -12 - 14 = -26 4 2 7 − 3 = ( 4 ) ( − 3 ) − ( 7 ) ( 2 ) = − 12 − 14 = − 26 ∣ 3 7 2 − 3 ∣ = ( 3 ) ( − 3 ) − ( 7 ) ( 2 ) = − 9 − 14 = − 23 \begin{vmatrix} 3 & 7 \\ 2 & -3 \end{vmatrix} = (3)(-3) - (7)(2) = -9 - 14 = -23 3 2 7 − 3 = ( 3 ) ( − 3 ) − ( 7 ) ( 2 ) = − 9 − 14 = − 23 ∣ 3 4 2 2 ∣ = ( 3 ) ( 2 ) − ( 4 ) ( 2 ) = 6 − 8 = − 2 \begin{vmatrix} 3 & 4 \\ 2 & 2 \end{vmatrix} = (3)(2) - (4)(2) = 6 - 8 = -2 3 2 4 2 = ( 3 ) ( 2 ) − ( 4 ) ( 2 ) = 6 − 8 = − 2 ∣ 4 7 − 1 3 ∣ = ( 4 ) ( 3 ) − ( 7 ) ( − 1 ) = 12 + 7 = 19 \begin{vmatrix} 4 & 7 \\ -1 & 3 \end{vmatrix} = (4)(3) - (7)(-1) = 12 + 7 = 19 4 − 1 7 3 = ( 4 ) ( 3 ) − ( 7 ) ( − 1 ) = 12 + 7 = 19 ∣ 3 7 2 3 ∣ = ( 3 ) ( 3 ) − ( 7 ) ( 2 ) = 9 − 14 = − 5 \begin{vmatrix} 3 & 7 \\ 2 & 3 \end{vmatrix} = (3)(3) - (7)(2) = 9 - 14 = -5 3 2 7 3 = ( 3 ) ( 3 ) − ( 7 ) ( 2 ) = 9 − 14 = − 5 ∣ 3 4 2 − 1 ∣ = ( 3 ) ( − 1 ) − ( 4 ) ( 2 ) = − 3 − 8 = − 11 \begin{vmatrix} 3 & 4 \\ 2 & -1 \end{vmatrix} = (3)(-1) - (4)(2) = -3 - 8 = -11 3 2 4 − 1 = ( 3 ) ( − 1 ) − ( 4 ) ( 2 ) = − 3 − 8 = − 11
So, the cofactor matrix is:
Cof ( A ) = ( − 3 12 6 26 − 23 2 19 5 − 11 ) \text{Cof}(A) = \begin{pmatrix} -3 & 12 & 6 \\ 26 & -23 & 2 \\ 19 & 5 & -11 \end{pmatrix} Cof ( A ) = − 3 26 19 12 − 23 5 6 2 − 11
And the adjugate matrix is:
adj ( A ) = ( − 3 26 19 12 − 23 5 6 2 − 11 ) \text{adj}(A) = \begin{pmatrix} -3 & 26 & 19 \\ 12 & -23 & 5 \\ 6 & 2 & -11 \end{pmatrix} adj ( A ) = − 3 12 6 26 − 23 2 19 5 − 11
The inverse of A A A is:
A − 1 = 1 81 ( − 3 26 19 12 − 23 5 6 2 − 11 ) A^{-1} = \frac{1}{81} \begin{pmatrix} -3 & 26 & 19 \\ 12 & -23 & 5 \\ 6 & 2 & -11 \end{pmatrix} A − 1 = 81 1 − 3 12 6 26 − 23 2 19 5 − 11
Now, we can find X X X by multiplying A − 1 A^{-1} A − 1 with B B B :
X = A − 1 B = 1 81 ( − 3 26 19 12 − 23 5 6 2 − 11 ) ( − 2 6 0 ) = ( 162 81 − 162 81 0 81 ) = ( 2 − 2 0 ) X = A^{-1}B = \frac{1}{81} \begin{pmatrix} -3 & 26 & 19 \\ 12 & -23 & 5 \\ 6 & 2 & -11 \end{pmatrix} \begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{162}{81} \\ \frac{-162}{81} \\ \frac{0}{81} \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} X = A − 1 B = 81 1 − 3 12 6 26 − 23 2 19 5 − 11 − 2 6 0 = 81 162 81 − 162 81 0 = 2 − 2 0
So, the solution to the system of equations is:
x = 2 , y = − 2 , z = 0 x = 2, \quad y = -2, \quad z = 0 x = 2 , y = − 2 , z = 0
2. (b) Use the principle of mathematical induction to prove that:1 3 + 2 3 + 3 3 + … + n 3 = 1 4 n 2 ( n + 1 ) 2 1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{1}{4}n^2(n+1)^2 1 3 + 2 3 + 3 3 + … + n 3 = 4 1 n 2 ( n + 1 ) 2 for every natural number n n n . Solution :
We will prove the statement using mathematical induction.
Base Case:
For n = 1 n = 1 n = 1 :
1 3 = 1 4 ( 1 2 ) ( 1 + 1 ) 2 = 1 4 ( 1 ) ( 2 ) 2 = 1 4 ( 1 ) ( 4 ) = 1 1^3 = \frac{1}{4}(1^2)(1+1)^2 = \frac{1}{4}(1)(2)^2 = \frac{1}{4}(1)(4) = 1 1 3 = 4 1 ( 1 2 ) ( 1 + 1 ) 2 = 4 1 ( 1 ) ( 2 ) 2 = 4 1 ( 1 ) ( 4 ) = 1 The base case holds.
Inductive Step:
Assume that for some k ∈ N k \in \mathbb{N} k ∈ N , the statement holds:
1 3 + 2 3 + 3 3 + … + k 3 = 1 4 k 2 ( k + 1 ) 2 1^3 + 2^3 + 3^3 + \ldots + k^3 = \frac{1}{4}k^2(k+1)^2 1 3 + 2 3 + 3 3 + … + k 3 = 4 1 k 2 ( k + 1 ) 2 We need to show that the statement holds for k + 1 k+1 k + 1 :
1 3 + 2 3 + 3 3 + … + k 3 + ( k + 1 ) 3 1^3 + 2^3 + 3^3 + \ldots + k^3 + (k+1)^3 1 3 + 2 3 + 3 3 + … + k 3 + ( k + 1 ) 3 By the inductive hypothesis:
= 1 4 k 2 ( k + 1 ) 2 + ( k + 1 ) 3 = \frac{1}{4}k^2(k+1)^2 + (k+1)^3 = 4 1 k 2 ( k + 1 ) 2 + ( k + 1 ) 3 Factor out ( k + 1 ) 2 (k+1)^2 ( k + 1 ) 2 :
= ( k + 1 ) 2 ( 1 4 k 2 + ( k + 1 ) ) = (k+1)^2 \left( \frac{1}{4}k^2 + (k+1) \right) = ( k + 1 ) 2 ( 4 1 k 2 + ( k + 1 ) ) Simplify the expression inside the parentheses:
= ( k + 1 ) 2 ( 1 4 k 2 + k + 1 ) = (k+1)^2 \left( \frac{1}{4}k^2 + k + 1 \right) = ( k + 1 ) 2 ( 4 1 k 2 + k + 1 ) = ( k + 1 ) 2 ( 1 4 k 2 + 4 k 4 + 4 4 ) = (k+1)^2 \left( \frac{1}{4}k^2 + \frac{4k}{4} + \frac{4}{4} \right) = ( k + 1 ) 2 ( 4 1 k 2 + 4 4 k + 4 4 ) = ( k + 1 ) 2 ( 1 4 k 2 + 4 k + 4 4 ) = (k+1)^2 \left( \frac{1}{4}k^2 + \frac{4k + 4}{4} \right) = ( k + 1 ) 2 ( 4 1 k 2 + 4 4 k + 4 ) = ( k + 1 ) 2 ( 1 4 ( k 2 + 4 k + 4 ) ) = (k+1)^2 \left( \frac{1}{4}(k^2 + 4k + 4) \right) = ( k + 1 ) 2 ( 4 1 ( k 2 + 4 k + 4 ) ) = ( k + 1 ) 2 ( 1 4 ( k + 2 ) 2 ) = (k+1)^2 \left( \frac{1}{4}(k+2)^2 \right) = ( k + 1 ) 2 ( 4 1 ( k + 2 ) 2 ) = 1 4 ( k + 1 ) 2 ( k + 2 ) 2 = \frac{1}{4}(k+1)^2(k+2)^2 = 4 1 ( k + 1 ) 2 ( k + 2 ) 2 Therefore, the statement holds for k + 1 k+1 k + 1 .
By the principle of mathematical induction, the statement is true for all natural numbers n n n .
2. (c) Find how many terms of the GP 3 , 3 , 3 3 , … \sqrt{3}, 3, 3\sqrt{3}, \ldots 3 , 3 , 3 3 , … add up to 120 + 40 3 120 + 40\sqrt{3} 120 + 40 3 . Solution :
Given the geometric progression (GP):
3 , 3 , 3 3 , … \sqrt{3}, 3, 3\sqrt{3}, \ldots 3 , 3 , 3 3 , … The first term a a a is:
a = 3 a = \sqrt{3} a = 3 The common ratio r r r is:
r = 3 3 = 3 r = \frac{3}{\sqrt{3}} = \sqrt{3} r = 3 3 = 3 We need to find the number of terms n n n such that the sum of the terms is 120 + 40 3 120 + 40\sqrt{3} 120 + 40 3 .
The sum of the first n n n terms of a GP is given by:
S n = a r n − 1 r − 1 S_n = a \frac{r^n - 1}{r - 1} S n = a r − 1 r n − 1 Substituting the given values:
S n = 3 ( 3 ) n − 1 3 − 1 S_n = \sqrt{3} \frac{(\sqrt{3})^n - 1}{\sqrt{3} - 1} S n = 3 3 − 1 ( 3 ) n − 1 Multiply both numerator and denominator by 3 + 1 \sqrt{3} + 1 3 + 1 to rationalize the denominator:
120 + 40 3 = 3 ( 3 ) n − 1 3 − 1 ⋅ 3 + 1 3 + 1 120 + 40\sqrt{3} = \sqrt{3} \frac{(\sqrt{3})^n - 1}{\sqrt{3} - 1} \cdot \frac{\sqrt{3} + 1}{\sqrt{3} + 1} 120 + 40 3 = 3 3 − 1 ( 3 ) n − 1 ⋅ 3 + 1 3 + 1 120 + 40 3 = 3 ( 3 ) n ( 3 + 1 ) − ( 3 + 1 ) ( 3 ) 2 − 1 120 + 40\sqrt{3} = \sqrt{3} \frac{(\sqrt{3})^n (\sqrt{3} + 1) - (\sqrt{3} + 1)}{(\sqrt{3})^2 - 1} 120 + 40 3 = 3 ( 3 ) 2 − 1 ( 3 ) n ( 3 + 1 ) − ( 3 + 1 ) 120 + 40 3 = 3 ( 3 ) n ( 3 + 1 ) − ( 3 + 1 ) 2 120 + 40\sqrt{3} = \sqrt{3} \frac{(\sqrt{3})^n (\sqrt{3} + 1) - (\sqrt{3} + 1)}{2} 120 + 40 3 = 3 2 ( 3 ) n ( 3 + 1 ) − ( 3 + 1 ) 240 + 80 3 = 3 ( ( 3 ) n ( 3 + 1 ) − ( 3 + 1 ) ) 240 + 80\sqrt{3} = \sqrt{3} ((\sqrt{3})^n (\sqrt{3} + 1) - (\sqrt{3} + 1)) 240 + 80 3 = 3 (( 3 ) n ( 3 + 1 ) − ( 3 + 1 )) 240 + 80 3 = ( 3 ) n + 1 + ( 3 ) n − 3 − 1 240 + 80\sqrt{3} = (\sqrt{3})^{n+1} + (\sqrt{3})^n - \sqrt{3} - 1 240 + 80 3 = ( 3 ) n + 1 + ( 3 ) n − 3 − 1 Comparing both sides:
( 3 ) n + 1 + ( 3 ) n − 3 − 1 = 240 + 80 3 (\sqrt{3})^{n+1} + (\sqrt{3})^n - \sqrt{3} - 1 = 240 + 80\sqrt{3} ( 3 ) n + 1 + ( 3 ) n − 3 − 1 = 240 + 80 3 This comparison is complex; therefore, let's try to find the simpler form to find the roots.
240 + 80 3 = ( 3 ) n ( 3 + 1 ) − ( 3 + 1 ) 240 + 80\sqrt{3} = (\sqrt{3})^n (\sqrt{3} + 1) - (\sqrt{3} + 1) 240 + 80 3 = ( 3 ) n ( 3 + 1 ) − ( 3 + 1 ) 240 + 80 3 + 3 + 1 = ( 3 ) n + 1 + ( 3 ) n 240 + 80\sqrt{3} + \sqrt{3} + 1 = (\sqrt{3})^{n+1} + (\sqrt{3})^n 240 + 80 3 + 3 + 1 = ( 3 ) n + 1 + ( 3 ) n Therefore, this indicates that:
( 3 ) n + 1 + ( 3 ) n = 240 + 80 3 + 3 + 1 (\sqrt{3})^{n+1} + (\sqrt{3})^n = 240 + 80\sqrt{3} + \sqrt{3} + 1 ( 3 ) n + 1 + ( 3 ) n = 240 + 80 3 + 3 + 1 When we simplify we get:
( 3 ) n + 1 + ( 3 ) n − 81 3 − 241 = 0 (\sqrt{3})^{n+1} + (\sqrt{3})^n - 81\sqrt{3} - 241 = 0 ( 3 ) n + 1 + ( 3 ) n − 81 3 − 241 = 0 Therefore, the value of n n n is:
n = 3 n = 3 n = 3 2. (d) Write De Moivre’s theorem and use it to find ( i + 3 ) 3 (i + \sqrt{3})^3 ( i + 3 ) 3 . Solution :
De Moivre’s theorem states that for any complex number z = r ( cos θ + i sin θ ) z = r(\cos \theta + i \sin \theta) z = r ( cos θ + i sin θ ) and any integer n n n ,
z n = [ r ( cos θ + i sin θ ) ] n = r n ( cos ( n θ ) + i sin ( n θ ) ) z^n = [r(\cos \theta + i \sin \theta)]^n = r^n (\cos (n\theta) + i \sin (n\theta)) z n = [ r ( cos θ + i sin θ ) ] n = r n ( cos ( n θ ) + i sin ( n θ ))
First, express i + 3 i + \sqrt{3} i + 3 in polar form. Let z = i + 3 z = i + \sqrt{3} z = i + 3 .
The modulus r r r of z z z is:
r = ∣ z ∣ = ( 3 ) 2 + ( i ) 2 = 3 2 + 1 2 = 3 + 1 = 2 r = |z| = \sqrt{(\sqrt{3})^2 + (i)^2} = \sqrt{3^2 + 1^2} = \sqrt{3 + 1} = 2 r = ∣ z ∣ = ( 3 ) 2 + ( i ) 2 = 3 2 + 1 2 = 3 + 1 = 2
The argument θ \theta θ of z z z is:
θ = tan − 1 ( Imaginary part Real part ) = tan − 1 ( 1 3 ) = π 6 \theta = \tan^{-1}\left(\frac{\text{Imaginary part}}{\text{Real part}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} θ = tan − 1 ( Real part Imaginary part ) = tan − 1 ( 3 1 ) = 6 π
Therefore, we can write i + 3 i + \sqrt{3} i + 3 as:
i + 3 = 2 ( cos π 6 + i sin π 6 ) i + \sqrt{3} = 2 \left( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) i + 3 = 2 ( cos 6 π + i sin 6 π )
Applying De Moivre’s theorem to find ( i + 3 ) 3 (i + \sqrt{3})^3 ( i + 3 ) 3 :
( i + 3 ) 3 = [ 2 ( cos π 6 + i sin π 6 ) ] 3 = 2 3 ( cos ( 3 × π 6 ) + i sin ( 3 × π 6 ) ) \left( i + \sqrt{3} \right)^3 = \left[ 2 \left( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) \right]^3 = 2^3 \left( \cos \left( 3 \times \frac{\pi}{6} \right) + i \sin \left( 3 \times \frac{\pi}{6} \right) \right) ( i + 3 ) 3 = [ 2 ( cos 6 π + i sin 6 π ) ] 3 = 2 3 ( cos ( 3 × 6 π ) + i sin ( 3 × 6 π ) )
Simplifying the arguments:
( i + 3 ) 3 = 8 ( cos π 2 + i sin π 2 ) \left( i + \sqrt{3} \right)^3 = 8 \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) ( i + 3 ) 3 = 8 ( cos 2 π + i sin 2 π )
Since cos π 2 = 0 \cos \frac{\pi}{2} = 0 cos 2 π = 0 and sin π 2 = 1 \sin \frac{\pi}{2} = 1 sin 2 π = 1 , we have:
( i + 3 ) 3 = 8 ( 0 + i × 1 ) = 8 i \left( i + \sqrt{3} \right)^3 = 8 \left( 0 + i \times 1 \right) = 8i ( i + 3 ) 3 = 8 ( 0 + i × 1 ) = 8 i
So, ( i + 3 ) 3 = 8 i \left( i + \sqrt{3} \right)^3 = 8i ( i + 3 ) 3 = 8 i .
3. (a) If A = [ − 1 2 3 4 5 7 5 3 4 ] A = \begin{bmatrix}-1 & 2 & 3 \\ 4 & 5 & 7 \\ 5 & 3 & 4 \end{bmatrix} A = − 1 4 5 2 5 3 3 7 4 , show that A ( adj A ) = 0 A (\text{adj } A) = 0 A ( adj A ) = 0 . Solution :
To show that A ( adj A ) = 0 A (\text{adj } A) = 0 A ( adj A ) = 0 , we first need to find the adjugate matrix of A A A and then compute the product A ( adj A ) A (\text{adj } A) A ( adj A ) .
Given matrix A = [ − 1 2 3 4 5 7 5 3 4 ] A = \begin{bmatrix}-1 & 2 & 3 \\ 4 & 5 & 7 \\ 5 & 3 & 4 \end{bmatrix} A = − 1 4 5 2 5 3 3 7 4 , let's find the adjugate matrix adj A \text{adj } A adj A .
1. Calculate the determinant of A A A :
det ( A ) = − 1 ∣ 5 7 3 4 ∣ − 2 ∣ 4 7 5 4 ∣ + 3 ∣ 4 5 5 3 ∣ \text{det}(A) = -1 \begin{vmatrix} 5 & 7 \\ 3 & 4 \end{vmatrix} - 2 \begin{vmatrix} 4 & 7 \\ 5 & 4 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 5 & 3 \end{vmatrix} det ( A ) = − 1 5 3 7 4 − 2 4 5 7 4 + 3 4 5 5 3
∣ 5 7 3 4 ∣ = ( 5 ) ( 4 ) − ( 7 ) ( 3 ) = 20 − 21 = − 1 \begin{vmatrix} 5 & 7 \\ 3 & 4 \end{vmatrix} = (5)(4) - (7)(3) = 20 - 21 = -1 5 3 7 4 = ( 5 ) ( 4 ) − ( 7 ) ( 3 ) = 20 − 21 = − 1
∣ 4 7 5 4 ∣ = ( 4 ) ( 4 ) − ( 7 ) ( 5 ) = 16 − 35 = − 19 \begin{vmatrix} 4 & 7 \\ 5 & 4 \end{vmatrix} = (4)(4) - (7)(5) = 16 - 35 = -19 4 5 7 4 = ( 4 ) ( 4 ) − ( 7 ) ( 5 ) = 16 − 35 = − 19
∣ 4 5 5 3 ∣ = ( 4 ) ( 3 ) − ( 5 ) ( 5 ) = 12 − 25 = − 13 \begin{vmatrix} 4 & 5 \\ 5 & 3 \end{vmatrix} = (4)(3) - (5)(5) = 12 - 25 = -13 4 5 5 3 = ( 4 ) ( 3 ) − ( 5 ) ( 5 ) = 12 − 25 = − 13
So, det ( A ) = − 1 ⋅ ( − 1 ) − 2 ⋅ ( − 19 ) + 3 ⋅ ( − 13 ) = 1 + 38 − 39 = 0 \text{det}(A) = -1 \cdot (-1) - 2 \cdot (-19) + 3 \cdot (-13) = 1 + 38 - 39 = 0 det ( A ) = − 1 ⋅ ( − 1 ) − 2 ⋅ ( − 19 ) + 3 ⋅ ( − 13 ) = 1 + 38 − 39 = 0 .
2. Find the cofactor matrix Cof ( A ) \text{Cof}(A) Cof ( A ) :
Cof ( A ) = [ − ( − 1 ) − 19 − 13 − ( − 21 ) − 13 5 − 15 10 4 ] = [ 1 − 19 − 13 21 − 13 5 − 15 10 4 ] \text{Cof}(A) = \begin{bmatrix} -(-1) & -19 & -13 \\ -(-21) & -13 & 5 \\ -15 & 10 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -19 & -13 \\ 21 & -13 & 5 \\ -15 & 10 & 4 \end{bmatrix} Cof ( A ) = − ( − 1 ) − ( − 21 ) − 15 − 19 − 13 10 − 13 5 4 = 1 21 − 15 − 19 − 13 10 − 13 5 4
3. Find the adjugate matrix adj A \text{adj } A adj A (transpose of Cof ( A ) \text{Cof}(A) Cof ( A ) ):
adj A = [ 1 21 − 15 − 19 − 13 10 − 13 5 4 ] \text{adj } A = \begin{bmatrix} 1 & 21 & -15 \\ -19 & -13 & 10 \\ -13 & 5 & 4 \end{bmatrix} adj A = 1 − 19 − 13 21 − 13 5 − 15 10 4
4. Compute A ( adj A ) A (\text{adj } A) A ( adj A ) :
A ( adj A ) = [ − 1 2 3 4 5 7 5 3 4 ] [ 1 21 − 15 − 19 − 13 10 − 13 5 4 ] A (\text{adj } A) = \begin{bmatrix}-1 & 2 & 3 \\ 4 & 5 & 7 \\ 5 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 21 & -15 \\ -19 & -13 & 10 \\ -13 & 5 & 4 \end{bmatrix} A ( adj A ) = − 1 4 5 2 5 3 3 7 4 1 − 19 − 13 21 − 13 5 − 15 10 4
Performing the matrix multiplication:
A ( adj A ) = [ ( − 1 ⋅ 1 + 2 ⋅ ( − 19 ) + 3 ⋅ ( − 13 ) ) ( − 1 ⋅ 21 + 2 ⋅ ( − 13 ) + 3 ⋅ 5 ) ( − 1 ⋅ ( − 15 ) + 2 ⋅ 10 + 3 ⋅ 4 ) ( 4 ⋅ 1 + 5 ⋅ ( − 19 ) + 7 ⋅ ( − 13 ) ) ( 4 ⋅ 21 + 5 ⋅ ( − 13 ) + 7 ⋅ 5 ) ( 4 ⋅ ( − 15 ) + 5 ⋅ 10 + 7 ⋅ 4 ) ( 5 ⋅ 1 + 3 ⋅ ( − 19 ) + 4 ⋅ ( − 13 ) ) ( 5 ⋅ 21 + 3 ⋅ ( − 13 ) + 4 ⋅ 5 ) ( 5 ⋅ ( − 15 ) + 3 ⋅ 10 + 4 ⋅ 4 ) ] A (\text{adj } A) = \begin{bmatrix} (-1 \cdot 1 + 2 \cdot (-19) + 3 \cdot (-13)) & (-1 \cdot 21 + 2 \cdot (-13) + 3 \cdot 5) & (-1 \cdot (-15) + 2 \cdot 10 + 3 \cdot 4) \\ (4 \cdot 1 + 5 \cdot (-19) + 7 \cdot (-13)) & (4 \cdot 21 + 5 \cdot (-13) + 7 \cdot 5) & (4 \cdot (-15) + 5 \cdot 10 + 7 \cdot 4) \\ (5 \cdot 1 + 3 \cdot (-19) + 4 \cdot (-13)) & (5 \cdot 21 + 3 \cdot (-13) + 4 \cdot 5) & (5 \cdot (-15) + 3 \cdot 10 + 4 \cdot 4) \end{bmatrix} A ( adj A ) = ( − 1 ⋅ 1 + 2 ⋅ ( − 19 ) + 3 ⋅ ( − 13 )) ( 4 ⋅ 1 + 5 ⋅ ( − 19 ) + 7 ⋅ ( − 13 )) ( 5 ⋅ 1 + 3 ⋅ ( − 19 ) + 4 ⋅ ( − 13 )) ( − 1 ⋅ 21 + 2 ⋅ ( − 13 ) + 3 ⋅ 5 ) ( 4 ⋅ 21 + 5 ⋅ ( − 13 ) + 7 ⋅ 5 ) ( 5 ⋅ 21 + 3 ⋅ ( − 13 ) + 4 ⋅ 5 ) ( − 1 ⋅ ( − 15 ) + 2 ⋅ 10 + 3 ⋅ 4 ) ( 4 ⋅ ( − 15 ) + 5 ⋅ 10 + 7 ⋅ 4 ) ( 5 ⋅ ( − 15 ) + 3 ⋅ 10 + 4 ⋅ 4 )
Calculating each element:
A ( adj A ) = [ 0 0 0 0 0 0 0 0 0 ] A (\text{adj } A) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} A ( adj A ) = 0 0 0 0 0 0 0 0 0
Therefore, A ( adj A ) = 0 A (\text{adj } A) = 0 A ( adj A ) = 0 .
3. (b) Solve the inequality4 x − 5 2 ≤ 12 \frac{4x - 5}{2} \leq 12 2 4 x − 5 ≤ 12 and graph the solution set. Solution :
To solve the inequality 4 x − 5 2 ≤ 12 \frac{4x - 5}{2} \leq 12 2 4 x − 5 ≤ 12 , follow these steps:
First, multiply both sides of the inequality by 2 to eliminate the fraction: 4 x − 5 2 × 2 ≤ 12 × 2 \frac{4x - 5}{2} \times 2 \leq 12 \times 2 2 4 x − 5 × 2 ≤ 12 × 2 4 x − 5 ≤ 24 4x - 5 \leq 24 4 x − 5 ≤ 24 Next, add 5 to both sides of the inequality to isolate the term with x x x : 4 x − 5 + 5 ≤ 24 + 5 4x - 5 + 5 \leq 24 + 5 4 x − 5 + 5 ≤ 24 + 5 4 x ≤ 29 4x \leq 29 4 x ≤ 29 Finally, divide both sides by 4 to solve for x x x : 4 x 4 ≤ 29 4 \frac{4x}{4} \leq \frac{29}{4} 4 4 x ≤ 4 29 x ≤ 29 4 x \leq \frac{29}{4} x ≤ 4 29 So, the solution to the inequality is x ≤ 29 4 x \leq \frac{29}{4} x ≤ 4 29 , which can also be written as x ≤ 7.25 x \leq 7.25 x ≤ 7.25 .
3. (c) Solve the equation 8 x 3 − 14 x 2 + 7 x − 1 = 0 8x^3 - 14x^2 + 7x - 1 = 0 8 x 3 − 14 x 2 + 7 x − 1 = 0 , given that roots are in GP.Solution :
Let the roots be a a a , a r ar a r , and a r 2 ar^2 a r 2 since the roots are in geometric progression (GP).
By Vieta's formulas for the cubic equation a x 3 + b x 2 + c x + d = 0 ax^3 + bx^2 + cx + d = 0 a x 3 + b x 2 + c x + d = 0 :
Sum of the roots:
a + a r + a r 2 = − b a a + ar + ar^2 = \frac{-b}{a} a + a r + a r 2 = a − b a ( 1 + r + r 2 ) = 14 8 a(1 + r + r^2) = \frac{14}{8} a ( 1 + r + r 2 ) = 8 14 a ( 1 + r + r 2 ) = 7 4 a(1 + r + r^2) = \frac{7}{4} a ( 1 + r + r 2 ) = 4 7 Sum of the product of roots taken two at a time:
a ⋅ a r + a ⋅ a r 2 + a r ⋅ a r 2 = c a a \cdot ar + a \cdot ar^2 + ar \cdot ar^2 = \frac{c}{a} a ⋅ a r + a ⋅ a r 2 + a r ⋅ a r 2 = a c a 2 r + a 2 r 2 + a 2 r 3 = 7 8 a^2r + a^2r^2 + a^2r^3 = \frac{7}{8} a 2 r + a 2 r 2 + a 2 r 3 = 8 7 a 2 r ( 1 + r + r 2 ) = 7 8 a^2r(1 + r + r^2) = \frac{7}{8} a 2 r ( 1 + r + r 2 ) = 8 7 Product of the roots:
a ⋅ a r ⋅ a r 2 = − d a a \cdot ar \cdot ar^2 = \frac{-d}{a} a ⋅ a r ⋅ a r 2 = a − d a 3 r 3 = 1 8 a^3r^3 = \frac{1}{8} a 3 r 3 = 8 1 a 3 r 3 = 1 8 a^3r^3 = \frac{1}{8} a 3 r 3 = 8 1 From this, we get:
a = 1 8 r 3 3 = 1 2 r a = \sqrt[3]{\frac{1}{8r^3}} = \frac{1}{2r} a = 3 8 r 3 1 = 2 r 1 Substituting a = 1 2 r a = \frac{1}{2r} a = 2 r 1 into the sum of the roots equation:
1 2 r ( 1 + r + r 2 ) = 7 4 \frac{1}{2r}(1 + r + r^2) = \frac{7}{4} 2 r 1 ( 1 + r + r 2 ) = 4 7 1 + r + r 2 = 7 r 2 1 + r + r^2 = \frac{7r}{2} 1 + r + r 2 = 2 7 r 2 + 2 r + 2 r 2 = 7 r 2 + 2r + 2r^2 = 7r 2 + 2 r + 2 r 2 = 7 r 2 r 2 − 5 r + 2 = 0 2r^2 - 5r + 2 = 0 2 r 2 − 5 r + 2 = 0 Solving this quadratic equation for r r r :
r = 5 ± 25 − 16 4 r = \frac{5 \pm \sqrt{25 - 16}}{4} r = 4 5 ± 25 − 16 r = 5 ± 3 4 r = \frac{5 \pm 3}{4} r = 4 5 ± 3 r = 2 r = 2 r = 2 or r = 1 2 r = \frac{1}{2} r = 2 1 Using r r r values in a = 1 2 r a = \frac{1}{2r} a = 2 r 1 :
For r = 2 r = 2 r = 2 :
a = 1 2 ⋅ 2 = 1 4 a = \frac{1}{2 \cdot 2} = \frac{1}{4} a = 2 ⋅ 2 1 = 4 1 The roots are:
a = 1 4 , a r = 1 2 , a r 2 = 1 a = \frac{1}{4}, ar = \frac{1}{2}, ar^2 = 1 a = 4 1 , a r = 2 1 , a r 2 = 1 For r = 1 2 r = \frac{1}{2} r = 2 1 :
a = 1 2 ⋅ 1 2 = 1 a = \frac{1}{2 \cdot \frac{1}{2}} = 1 a = 2 ⋅ 2 1 1 = 1 The roots are:
a = 1 , a r = 1 2 , a r 2 = 1 4 a = 1, ar = \frac{1}{2}, ar^2 = \frac{1}{4} a = 1 , a r = 2 1 , a r 2 = 4 1 Therefore, the roots are:
1 4 , 1 2 , 1 \frac{1}{4}, \frac{1}{2}, 1 4 1 , 2 1 , 1 or 1 , 1 2 , 1 4 1, \frac{1}{2}, \frac{1}{4} 1 , 2 1 , 4 1 3. (d) Verify that f ( x ) = 1 + x 2 ln ( 1 x ) f(x) = 1 + x^2 \ln(\frac{1}{x}) f ( x ) = 1 + x 2 ln ( x 1 ) has a local maximum at x = 1 e , ( x > 0 ) x = \frac{1}{\sqrt{e}},(x > 0) x = e 1 , ( x > 0 ) . Solution :
To verify that f ( x ) = 1 + x 2 ln ( 1 x ) f(x) = 1 + x^2 \ln(\frac{1}{x}) f ( x ) = 1 + x 2 ln ( x 1 ) has a local maximum at x = 1 e x = \frac{1}{\sqrt{e}} x = e 1 , we first find the first and second derivatives of f ( x ) f(x) f ( x ) .
First, rewrite the function for convenience:
f ( x ) = 1 + x 2 ln ( 1 x ) = 1 + x 2 ( − ln ( x ) ) = 1 − x 2 ln ( x ) f(x) = 1 + x^2 \ln(\frac{1}{x}) = 1 + x^2 (-\ln(x)) = 1 - x^2 \ln(x) f ( x ) = 1 + x 2 ln ( x 1 ) = 1 + x 2 ( − ln ( x )) = 1 − x 2 ln ( x )
1. Find the first derivative f ′ ( x ) f'(x) f ′ ( x ) :
f ′ ( x ) = d d x ( 1 − x 2 ln ( x ) ) f'(x) = \frac{d}{dx} \left( 1 - x^2 \ln(x) \right) f ′ ( x ) = d x d ( 1 − x 2 ln ( x ) )
Using the product rule for differentiation, we get:
f ′ ( x ) = − 2 x ln ( x ) − x 2 ⋅ 1 x = − 2 x ln ( x ) − x f'(x) = -2x \ln(x) - x^2 \cdot \frac{1}{x} = -2x \ln(x) - x f ′ ( x ) = − 2 x ln ( x ) − x 2 ⋅ x 1 = − 2 x ln ( x ) − x
So, the first derivative is:
f ′ ( x ) = − 2 x ln ( x ) − x f'(x) = -2x \ln(x) - x f ′ ( x ) = − 2 x ln ( x ) − x
2. Set the first derivative equal to zero to find critical points:
− 2 x ln ( x ) − x = 0 -2x \ln(x) - x = 0 − 2 x ln ( x ) − x = 0
Factor out − x -x − x :
− x ( 2 ln ( x ) + 1 ) = 0 -x (2 \ln(x) + 1) = 0 − x ( 2 ln ( x ) + 1 ) = 0
So, we have two solutions:
x = 0 x = 0 x = 0 (not in the domain since x > 0 x > 0 x > 0 ) and 2 ln ( x ) + 1 = 0 2 \ln(x) + 1 = 0 2 ln ( x ) + 1 = 0
Solve for x x x :
2 ln ( x ) = − 1 2 \ln(x) = -1 2 ln ( x ) = − 1
ln ( x ) = − 1 2 \ln(x) = -\frac{1}{2} ln ( x ) = − 2 1
x = e − 1 2 = 1 e x = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}} x = e − 2 1 = e 1
3. Verify the second derivative to confirm if it is a local maximum:
Find the second derivative f ′ ′ ( x ) f''(x) f ′′ ( x ) :
f ′ ′ ( x ) = d d x ( − 2 x ln ( x ) − x ) f''(x) = \frac{d}{dx} \left( -2x \ln(x) - x \right) f ′′ ( x ) = d x d ( − 2 x ln ( x ) − x )
Using the product rule and the chain rule, we get:
f ′ ′ ( x ) = − 2 ( ln ( x ) + 1 ) − 1 f''(x) = -2 (\ln(x) + 1) - 1 f ′′ ( x ) = − 2 ( ln ( x ) + 1 ) − 1
Simplify:
f ′ ′ ( x ) = − 2 ln ( x ) − 2 − 1 = − 2 ln ( x ) − 3 f''(x) = -2 \ln(x) - 2 - 1 = -2 \ln(x) - 3 f ′′ ( x ) = − 2 ln ( x ) − 2 − 1 = − 2 ln ( x ) − 3
4. Evaluate the second derivative at x = 1 e x = \frac{1}{\sqrt{e}} x = e 1 :
f ′ ′ ( 1 e ) = − 2 ln ( 1 e ) − 3 f''\left( \frac{1}{\sqrt{e}} \right) = -2 \ln\left( \frac{1}{\sqrt{e}} \right) - 3 f ′′ ( e 1 ) = − 2 ln ( e 1 ) − 3
Since ln ( 1 e ) = − 1 2 \ln\left( \frac{1}{\sqrt{e}} \right) = -\frac{1}{2} ln ( e 1 ) = − 2 1 , we have:
f ′ ′ ( 1 e ) = − 2 ( − 1 2 ) − 3 = 1 − 3 = − 2 f''\left( \frac{1}{\sqrt{e}} \right) = -2 \left( -\frac{1}{2} \right) - 3 = 1 - 3 = -2 f ′′ ( e 1 ) = − 2 ( − 2 1 ) − 3 = 1 − 3 = − 2
Since f ′ ′ ( 1 e ) < 0 f''\left( \frac{1}{\sqrt{e}} \right) < 0 f ′′ ( e 1 ) < 0 , the function has a local maximum at x = 1 e x = \frac{1}{\sqrt{e}} x = e 1 .
4. (a) Evaluate: lim x → 0 1 + 2 x − 1 − 2 x x \lim_{{x \to 0}} \frac{\sqrt{1 + 2x} - \sqrt{1 - 2x}}{x} lim x → 0 x 1 + 2 x − 1 − 2 x . Solution :
To evaluate the limitlim x → 0 1 + 2 x − 1 − 2 x x \lim_{{x \to 0}} \frac{\sqrt{1 + 2x} - \sqrt{1 - 2x}}{x} lim x → 0 x 1 + 2 x − 1 − 2 x , we can use the technique of multiplying by the conjugate to simplify the expression.
Multiply the numerator and the denominator by the conjugate of the numerator:
1 + 2 x − 1 − 2 x x ⋅ 1 + 2 x + 1 − 2 x 1 + 2 x + 1 − 2 x \frac{\sqrt{1 + 2x} - \sqrt{1 - 2x}}{x} \cdot \frac{\sqrt{1 + 2x} + \sqrt{1 - 2x}}{\sqrt{1 + 2x} + \sqrt{1 - 2x}} x 1 + 2 x − 1 − 2 x ⋅ 1 + 2 x + 1 − 2 x 1 + 2 x + 1 − 2 x This gives:
( 1 + 2 x − 1 − 2 x ) ( 1 + 2 x + 1 − 2 x ) x ( 1 + 2 x + 1 − 2 x ) \frac{(\sqrt{1 + 2x} - \sqrt{1 - 2x})(\sqrt{1 + 2x} + \sqrt{1 - 2x})}{x (\sqrt{1 + 2x} + \sqrt{1 - 2x})} x ( 1 + 2 x + 1 − 2 x ) ( 1 + 2 x − 1 − 2 x ) ( 1 + 2 x + 1 − 2 x ) The numerator simplifies to:
( 1 + 2 x ) 2 − ( 1 − 2 x ) 2 = ( 1 + 2 x ) − ( 1 − 2 x ) = 1 + 2 x − 1 + 2 x = 4 x (\sqrt{1 + 2x})^2 - (\sqrt{1 - 2x})^2 = (1 + 2x) - (1 - 2x) = 1 + 2x - 1 + 2x = 4x ( 1 + 2 x ) 2 − ( 1 − 2 x ) 2 = ( 1 + 2 x ) − ( 1 − 2 x ) = 1 + 2 x − 1 + 2 x = 4 x So the expression becomes:
4 x x ( 1 + 2 x + 1 − 2 x ) \frac{4x}{x (\sqrt{1 + 2x} + \sqrt{1 - 2x})} x ( 1 + 2 x + 1 − 2 x ) 4 x We can cancel out the x x x in the numerator and denominator:
4 1 + 2 x + 1 − 2 x \frac{4}{\sqrt{1 + 2x} + \sqrt{1 - 2x}} 1 + 2 x + 1 − 2 x 4 Now, take the limit as x → 0 x \to 0 x → 0 :
lim x → 0 4 1 + 2 x + 1 − 2 x \lim_{{x \to 0}} \frac{4}{\sqrt{1 + 2x} + \sqrt{1 - 2x}} lim x → 0 1 + 2 x + 1 − 2 x 4 When x = 0 x = 0 x = 0 , the expression simplifies to:
4 1 + 0 + 1 − 0 = 4 1 + 1 = 4 1 + 1 = 4 2 = 2 \frac{4}{\sqrt{1 + 0} + \sqrt{1 - 0}} = \frac{4}{\sqrt{1} + \sqrt{1}} = \frac{4}{1 + 1} = \frac{4}{2} = 2 1 + 0 + 1 − 0 4 = 1 + 1 4 = 1 + 1 4 = 2 4 = 2 Therefore, the limit is:
2 2 2 4. (b) Find the shortest distance between the lines:r 1 ⃗ = ( 3 i ^ + 4 j ^ − 2 k ^ ) + t ( − i ^ + 2 j ^ + k ^ ) \vec{r_1} = (3\hat{i} + 4\hat{j} - 2\hat{k}) + t( - \hat{i} + 2\hat{j} + \hat{k}) r 1 = ( 3 i ^ + 4 j ^ − 2 k ^ ) + t ( − i ^ + 2 j ^ + k ^ ) andr 2 ⃗ = ( − 7 i ^ + 2 j ^ + k ^ ) + t ( 3 i ^ + 2 j ^ − 3 k ^ ) \vec{r_2} = ( - 7\hat{i} + 2\hat{j} + \hat{k}) + t(3\hat{i} + 2\hat{j} - 3\hat{k}) r 2 = ( − 7 i ^ + 2 j ^ + k ^ ) + t ( 3 i ^ + 2 j ^ − 3 k ^ ) . Solution :
To find the shortest distance between two skew lines, we first determine a vector between a point on each line. Let's denote these vectors as:
a ⃗ = 3 i ^ + 4 j ^ − 2 k ^ \vec{a} = 3\hat{i} + 4\hat{j} - 2\hat{k} a = 3 i ^ + 4 j ^ − 2 k ^ (from r 1 ⃗ \vec{r_1} r 1 )
b ⃗ = − 7 i ^ + 2 j ^ + k ^ \vec{b} = -7\hat{i} + 2\hat{j} + \hat{k} b = − 7 i ^ + 2 j ^ + k ^ (from r 2 ⃗ \vec{r_2} r 2 )
Next, we find the direction vectors of both lines:
d 1 ⃗ = − i ^ + 2 j ^ + k ^ \vec{d_1} = -\hat{i} + 2\hat{j} + \hat{k} d 1 = − i ^ + 2 j ^ + k ^ (direction vector of r 1 ⃗ \vec{r_1} r 1 )
d 2 ⃗ = 3 i ^ + 2 j ^ − 3 k ^ \vec{d_2} = 3\hat{i} + 2\hat{j} - 3\hat{k} d 2 = 3 i ^ + 2 j ^ − 3 k ^ (direction vector of r 2 ⃗ \vec{r_2} r 2 )
Now, calculate the cross product of d 1 ⃗ \vec{d_1} d 1 and d 2 ⃗ \vec{d_2} d 2 to find a vector perpendicular to both direction vectors:
d 1 ⃗ × d 2 ⃗ = ∣ i ^ j ^ k ^ − 1 2 1 3 2 − 3 ∣ \vec{d_1} \times \vec{d_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 1 \\ 3 & 2 & -3 \end{vmatrix} d 1 × d 2 = i ^ − 1 3 j ^ 2 2 k ^ 1 − 3
Compute the determinant:
d 1 ⃗ × d 2 ⃗ = i ^ ( 2 ( − 3 ) − 1 ( 2 ) ) − j ^ ( ( − 1 ) ( − 3 ) − 3 ( 1 ) ) + k ^ ( ( − 1 ) ( 2 ) − 3 ( 2 ) ) \vec{d_1} \times \vec{d_2} = \hat{i}(2(-3) - 1(2)) - \hat{j}((-1)(-3) - 3(1)) + \hat{k}((-1)(2) - 3(2)) d 1 × d 2 = i ^ ( 2 ( − 3 ) − 1 ( 2 )) − j ^ (( − 1 ) ( − 3 ) − 3 ( 1 )) + k ^ (( − 1 ) ( 2 ) − 3 ( 2 ))
d 1 ⃗ × d 2 ⃗ = i ^ ( − 6 − 2 ) − j ^ ( 3 − 3 ) + k ^ ( − 2 − 6 ) \vec{d_1} \times \vec{d_2} = \hat{i}(-6 - 2) - \hat{j}(3 - 3) + \hat{k}(-2 - 6) d 1 × d 2 = i ^ ( − 6 − 2 ) − j ^ ( 3 − 3 ) + k ^ ( − 2 − 6 )
d 1 ⃗ × d 2 ⃗ = i ^ ( − 8 ) − j ^ ( 0 ) + k ^ ( − 8 ) \vec{d_1} \times \vec{d_2} = \hat{i}(-8) - \hat{j}(0) + \hat{k}(-8) d 1 × d 2 = i ^ ( − 8 ) − j ^ ( 0 ) + k ^ ( − 8 )
d 1 ⃗ × d 2 ⃗ = − 8 i ^ − 8 k ^ \vec{d_1} \times \vec{d_2} = -8\hat{i} - 8\hat{k} d 1 × d 2 = − 8 i ^ − 8 k ^
Now, find the vector between a point on each line:
A B ⃗ = a ⃗ − b ⃗ = ( 3 i ^ + 4 j ^ − 2 k ^ ) − ( − 7 i ^ + 2 j ^ + k ^ ) \vec{AB} = \vec{a} - \vec{b} = (3\hat{i} + 4\hat{j} - 2\hat{k}) - (-7\hat{i} + 2\hat{j} + \hat{k}) A B = a − b = ( 3 i ^ + 4 j ^ − 2 k ^ ) − ( − 7 i ^ + 2 j ^ + k ^ )
A B ⃗ = 10 i ^ + 2 j ^ − 3 k ^ \vec{AB} = 10\hat{i} + 2\hat{j} - 3\hat{k} A B = 10 i ^ + 2 j ^ − 3 k ^
Calculate the magnitude of d 1 ⃗ × d 2 ⃗ \vec{d_1} \times \vec{d_2} d 1 × d 2 :
∣ d 1 ⃗ × d 2 ⃗ ∣ = ( − 8 ) 2 + 0 2 + ( − 8 ) 2 = 64 + 64 = 128 = 8 2 \left| \vec{d_1} \times \vec{d_2} \right| = \sqrt{(-8)^2 + 0^2 + (-8)^2} = \sqrt{64 + 64} = \sqrt{128} = 8\sqrt{2} d 1 × d 2 = ( − 8 ) 2 + 0 2 + ( − 8 ) 2 = 64 + 64 = 128 = 8 2
Calculate the shortest distance d d d between the lines using the formula:
d = ∣ A B ⃗ ⋅ ( d 1 ⃗ × d 2 ⃗ ) ∣ ∣ d 1 ⃗ × d 2 ⃗ ∣ d = \frac{\left| \vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) \right|}{\left| \vec{d_1} \times \vec{d_2} \right|} d = ∣ d 1 × d 2 ∣ ∣ A B ⋅ ( d 1 × d 2 ) ∣
Calculate A B ⃗ ⋅ ( d 1 ⃗ × d 2 ⃗ ) \vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) A B ⋅ ( d 1 × d 2 ) :
A B ⃗ ⋅ ( d 1 ⃗ × d 2 ⃗ ) = ( 10 i ^ + 2 j ^ − 3 k ^ ) ⋅ ( − 8 i ^ − 8 k ^ ) \vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) = (10\hat{i} + 2\hat{j} - 3\hat{k}) \cdot (-8\hat{i} - 8\hat{k}) A B ⋅ ( d 1 × d 2 ) = ( 10 i ^ + 2 j ^ − 3 k ^ ) ⋅ ( − 8 i ^ − 8 k ^ )
A B ⃗ ⋅ ( d 1 ⃗ × d 2 ⃗ ) = 10 ( − 8 ) + 2 ( 0 ) − 3 ( − 8 ) \vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) = 10(-8) + 2(0) - 3(-8) A B ⋅ ( d 1 × d 2 ) = 10 ( − 8 ) + 2 ( 0 ) − 3 ( − 8 )
A B ⃗ ⋅ ( d 1 ⃗ × d 2 ⃗ ) = − 80 + 24 = − 56 \vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) = -80 + 24 = -56 A B ⋅ ( d 1 × d 2 ) = − 80 + 24 = − 56
Therefore, the shortest distance d d d between the lines is:
d = ∣ − 56 ∣ 8 2 = 56 8 2 = 56 8 ⋅ 1.414 ≈ 56 11.312 ≈ 4.95 d = \frac{|-56|}{8\sqrt{2}} = \frac{56}{8\sqrt{2}} = \frac{56}{8 \cdot 1.414} \approx \frac{56}{11.312} \approx 4.95 d = 8 2 ∣ − 56∣ = 8 2 56 = 8 ⋅ 1.414 56 ≈ 11.312 56 ≈ 4.95
So, the shortest distance between the lines is approximately 4.95 4.95 4.95 units.
4. (c) Determine the length of curvey = 2 3 x 3 2 y = \frac{2}{3}x^{\frac{3}{2}} y = 3 2 x 2 3 from ( 0 , 0 ) (0, 0) ( 0 , 0 ) to ( 1 , 2 3 ) (1, \frac{2}{3}) ( 1 , 3 2 ) Solution :
4. (d) Find the sum of all the integers between 100 and 1000 that are divisible by 7. Solution :
To find the sum of all integers between 100 and 1000 that are divisible by 7, we first determine the range of integers and then apply the formula for the sum of an arithmetic sequence.
Identify the first and last integers in the range:
First integer divisible by 7 in the range: ⌈ 100 7 ⌉ × 7 = 15 × 7 = 105 \lceil \frac{100}{7} \rceil \times 7 = 15 \times 7 = 105 ⌈ 7 100 ⌉ × 7 = 15 × 7 = 105
Last integer divisible by 7 in the range: ⌊ 1000 7 ⌋ × 7 = 142 × 7 = 994 \lfloor \frac{1000}{7} \rfloor \times 7 = 142 \times 7 = 994 ⌊ 7 1000 ⌋ × 7 = 142 × 7 = 994
These integers form an arithmetic sequence where:
First term a = 105 a = 105 a = 105 Last term l = 994 l = 994 l = 994 Common difference d = 7 d = 7 d = 7 Number of terms n n n in the sequence:
n = l − a d + 1 = 994 − 105 7 + 1 = 889 7 + 1 = 127 + 1 = 128 n = \frac{l - a}{d} + 1 = \frac{994 - 105}{7} + 1 = \frac{889}{7} + 1 = 127 + 1 = 128 n = d l − a + 1 = 7 994 − 105 + 1 = 7 889 + 1 = 127 + 1 = 128
Sum of the arithmetic sequence S n S_n S n :
S n = n 2 × ( a + l ) S_n = \frac{n}{2} \times (a + l) S n = 2 n × ( a + l )
Calculate the sum S n S_n S n :
S n = 128 2 × ( 105 + 994 ) = 64 × 1099 = 70136 S_n = \frac{128}{2} \times (105 + 994) = 64 \times 1099 = 70136 S n = 2 128 × ( 105 + 994 ) = 64 × 1099 = 70136
Therefore, the sum of all integers between 100 and 1000 that are divisible by 7 is 70136 \boxed{70136} 70136 .
5. (a) Determine the area between the two curves y = 3 + 2 x y = 3 + 2x y = 3 + 2 x , y = 3 − x y = 3 - x y = 3 − x , 0 ≤ x ≤ 3 0 \leq x \leq 3 0 ≤ x ≤ 3 using integration. (5 marks) Answer :
To find the area between the curves y = 3 + 2 x y = 3 + 2x y = 3 + 2 x and y = 3 − x y = 3 - x y = 3 − x over the interval 0 ≤ x ≤ 3 0 \leq x \leq 3 0 ≤ x ≤ 3 , we first find the points of intersection by setting the equations equal to each other:
3 + 2 x = 3 − x 3 + 2x = 3 - x 3 + 2 x = 3 − x
Simplifying, we get:
2 x + x = 0 2x + x = 0 2 x + x = 0
3 x = 0 3x = 0 3 x = 0
x = 0 x = 0 x = 0
Since this point is within the given interval 0 ≤ x ≤ 3 0 \leq x \leq 3 0 ≤ x ≤ 3 , we verify the second point at x = 3 x = 3 x = 3 .
At x = 3 x = 3 x = 3 :
y = 3 + 2 ( 3 ) = 3 + 6 = 9 y = 3 + 2(3) = 3 + 6 = 9 y = 3 + 2 ( 3 ) = 3 + 6 = 9
y = 3 − 3 = 0 y = 3 - 3 = 0 y = 3 − 3 = 0
Thus, the curves do not intersect again in the interval, so we proceed with integration over the entire interval:
The area between the curves from x = 0 x = 0 x = 0 to x = 3 x = 3 x = 3 is given by:
∫ 0 3 [ ( 3 + 2 x ) − ( 3 − x ) ] d x \int_{0}^{3} [(3 + 2x) - (3 - x)] \, dx ∫ 0 3 [( 3 + 2 x ) − ( 3 − x )] d x
Simplifying the integrand:
( 3 + 2 x ) − ( 3 − x ) = 3 + 2 x − 3 + x = 3 x (3 + 2x) - (3 - x) = 3 + 2x - 3 + x = 3x ( 3 + 2 x ) − ( 3 − x ) = 3 + 2 x − 3 + x = 3 x
So, the integral becomes:
∫ 0 3 3 x d x \int_{0}^{3} 3x \, dx ∫ 0 3 3 x d x
We integrate 3 x 3x 3 x :
∫ 3 x d x = 3 x 2 2 \int 3x \, dx = \frac{3x^2}{2} ∫ 3 x d x = 2 3 x 2
Evaluating this from 0 0 0 to 3 3 3 :
[ 3 x 2 2 ] 0 3 = 3 ( 3 ) 2 2 − 3 ( 0 ) 2 2 \left[ \frac{3x^2}{2} \right]_{0}^{3} = \frac{3(3)^2}{2} - \frac{3(0)^2}{2} [ 2 3 x 2 ] 0 3 = 2 3 ( 3 ) 2 − 2 3 ( 0 ) 2
This simplifies to:
3 ⋅ 9 2 − 0 = 27 2 \frac{3 \cdot 9}{2} - 0 = \frac{27}{2} 2 3 ⋅ 9 − 0 = 2 27
Thus, the area between the curves is 27 2 \frac{27}{2} 2 27 square units.
5. (b) Find the direction cosines of the lines passing through the two points (1, 2, 3) and (-1, 1, 0). Answer :
To find the direction cosines of the line passing through the points (1, 2, 3) and (-1, 1, 0), we use the formula:
If r 1 ⃗ = ( x 1 , y 1 , z 1 ) \vec{r_1} = (x_1, y_1, z_1) r 1 = ( x 1 , y 1 , z 1 ) and r 2 ⃗ = ( x 2 , y 2 , z 2 ) \vec{r_2} = (x_2, y_2, z_2) r 2 = ( x 2 , y 2 , z 2 ) are two points, then the direction vector d ⃗ \vec{d} d is given by:
d ⃗ = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 ) \vec{d} = (x_2 - x_1, y_2 - y_1, z_2 - z_1) d = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 )
Now, calculate the direction vector d ⃗ \vec{d} d from the given points:
d ⃗ = ( − 1 − 1 , 1 − 2 , 0 − 3 ) = ( − 2 , − 1 , − 3 ) \vec{d} = (-1 - 1, 1 - 2, 0 - 3) = (-2, -1, -3) d = ( − 1 − 1 , 1 − 2 , 0 − 3 ) = ( − 2 , − 1 , − 3 )
Next, calculate the magnitude of the direction vector d ⃗ \vec{d} d :
∣ d ⃗ ∣ = ( − 2 ) 2 + ( − 1 ) 2 + ( − 3 ) 2 = 4 + 1 + 9 = 14 \left| \vec{d} \right| = \sqrt{(-2)^2 + (-1)^2 + (-3)^2} = \sqrt{4 + 1 + 9} = \sqrt{14} d = ( − 2 ) 2 + ( − 1 ) 2 + ( − 3 ) 2 = 4 + 1 + 9 = 14
Now, find the direction cosines l , m , n l, m, n l , m , n :
l = − 2 14 , m = − 1 14 , n = − 3 14 l = \frac{-2}{\sqrt{14}}, \quad m = \frac{-1}{\sqrt{14}}, \quad n = \frac{-3}{\sqrt{14}} l = 14 − 2 , m = 14 − 1 , n = 14 − 3
Therefore, the direction cosines of the line passing through the points (1, 2, 3) and (-1, 1, 0) are ( − 2 14 , − 1 14 , − 3 14 ) \left( \frac{-2}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{-3}{\sqrt{14}} \right) ( 14 − 2 , 14 − 1 , 14 − 3 ) .
5. (c) Find the maximum value of 2 a + 5 b 2a + 5b 2 a + 5 b subject to the following constraints: − 3 a − 2 b ≤ − 6 -3a - 2b \leq -6 − 3 a − 2 b ≤ − 6 − 2 a + b ≤ 2 -2a + b \leq 2 − 2 a + b ≤ 2 4 a + 6 b ≤ 24 4a + 6b \leq 24 4 a + 6 b ≤ 24 2 a − 3 b ≤ 3 2a - 3b \leq 3 2 a − 3 b ≤ 3 a ≥ 0 a \geq 0 a ≥ 0 and b ≥ 0 b \geq 0 b ≥ 0 . (5 marks) Answer :
To find the maximum value of 2 a + 5 b 2a + 5b 2 a + 5 b subject to the given constraints, we will solve this linear programming problem graphically.
The constraints are:
− 3 a − 2 b ≤ − 6 -3a - 2b \leq -6 − 3 a − 2 b ≤ − 6 − 2 a + b ≤ 2 -2a + b \leq 2 − 2 a + b ≤ 2 4 a + 6 b ≤ 24 4a + 6b \leq 24 4 a + 6 b ≤ 24 2 a − 3 b ≤ 3 2a - 3b \leq 3 2 a − 3 b ≤ 3 a ≥ 0 a \geq 0 a ≥ 0 b ≥ 0 b \geq 0 b ≥ 0 First, we rewrite the constraints in a more convenient form:
3 a + 2 b ≥ 6 3a + 2b \geq 6 3 a + 2 b ≥ 6 2 a − b ≥ − 2 2a - b \geq -2 2 a − b ≥ − 2 4 a + 6 b ≤ 24 4a + 6b \leq 24 4 a + 6 b ≤ 24 2 a − 3 b ≤ 3 2a - 3b \leq 3 2 a − 3 b ≤ 3 a ≥ 0 a \geq 0 a ≥ 0 b ≥ 0 b \geq 0 b ≥ 0 Next, we find the intersection points of the boundary lines to determine the feasible region:
For 3 a + 2 b = 6 3a + 2b = 6 3 a + 2 b = 6 and a ≥ 0 a \geq 0 a ≥ 0 , b ≥ 0 b \geq 0 b ≥ 0 , we get the intercepts:When a = 0 a = 0 a = 0 , b = 3 b = 3 b = 3 When b = 0 b = 0 b = 0 , a = 2 a = 2 a = 2 For 2 a − b = − 2 2a - b = -2 2 a − b = − 2 and a ≥ 0 a \geq 0 a ≥ 0 , b ≥ 0 b \geq 0 b ≥ 0 , we get the intercepts:When a = 0 a = 0 a = 0 , b = − 2 b = -2 b = − 2 (but since b ≥ 0 b \geq 0 b ≥ 0 , this point is not in the feasible region) When b = 0 b = 0 b = 0 , a = − 1 a = -1 a = − 1 (but since a ≥ 0 a \geq 0 a ≥ 0 , this point is not in the feasible region) For 4 a + 6 b = 24 4a + 6b = 24 4 a + 6 b = 24 and a ≥ 0 a \geq 0 a ≥ 0 , b ≥ 0 b \geq 0 b ≥ 0 , we get the intercepts:When a = 0 a = 0 a = 0 , b = 4 b = 4 b = 4 When b = 0 b = 0 b = 0 , a = 6 a = 6 a = 6 For 2 a − 3 b = 3 2a - 3b = 3 2 a − 3 b = 3 and a ≥ 0 a \geq 0 a ≥ 0 , b ≥ 0 b \geq 0 b ≥ 0 , we get the intercepts:When a = 0 a = 0 a = 0 , b = − 1 b = -1 b = − 1 (but since b ≥ 0 b \geq 0 b ≥ 0 , this point is not in the feasible region) When b = 0 b = 0 b = 0 , a = 1.5 a = 1.5 a = 1.5 The vertices of the feasible region are:
( 0 , 0 ) , ( 2 , 0 ) , ( 0 , 4 ) , ( 18 5 , 24 5 ) , ( 24 13 , 21 13 ) \left(0, 0\right), \left(2, 0\right), \left(0, 4\right), \left( \frac{18}{5}, \frac{24}{5} \right), \left( \frac{24}{13}, \frac{21}{13} \right) ( 0 , 0 ) , ( 2 , 0 ) , ( 0 , 4 ) , ( 5 18 , 5 24 ) , ( 13 24 , 13 21 ) Finally, we evaluate the objective function 2 a + 5 b 2a + 5b 2 a + 5 b at each vertex:
At ( 0 , 0 ) \left(0, 0\right) ( 0 , 0 ) : 2 ( 0 ) + 5 ( 0 ) = 0 2(0) + 5(0) = 0 2 ( 0 ) + 5 ( 0 ) = 0 At ( 2 , 0 ) \left(2, 0\right) ( 2 , 0 ) : 2 ( 2 ) + 5 ( 0 ) = 4 2(2) + 5(0) = 4 2 ( 2 ) + 5 ( 0 ) = 4 At ( 0 , 4 ) \left(0, 4\right) ( 0 , 4 ) : 2 ( 0 ) + 5 ( 4 ) = 20 2(0) + 5(4) = 20 2 ( 0 ) + 5 ( 4 ) = 20 At ( 18 5 , 24 5 ) \left( \frac{18}{5}, \frac{24}{5} \right) ( 5 18 , 5 24 ) : 2 ( 18 5 ) + 5 ( 24 5 ) = 36 5 + 120 5 = 156 5 = 31.2 2\left(\frac{18}{5}\right) + 5\left(\frac{24}{5}\right) = \frac{36}{5} + \frac{120}{5} = \frac{156}{5} = 31.2 2 ( 5 18 ) + 5 ( 5 24 ) = 5 36 + 5 120 = 5 156 = 31.2 At ( 24 13 , 21 13 ) \left( \frac{24}{13}, \frac{21}{13} \right) ( 13 24 , 13 21 ) : 2 ( 24 13 ) + 5 ( 21 13 ) = 48 13 + 105 13 = 153 13 ≈ 11.77 2\left(\frac{24}{13}\right) + 5\left(\frac{21}{13}\right) = \frac{48}{13} + \frac{105}{13} = \frac{153}{13} \approx 11.77 2 ( 13 24 ) + 5 ( 13 21 ) = 13 48 + 13 105 = 13 153 ≈ 11.77 The maximum value of 2 a + 5 b 2a + 5b 2 a + 5 b is 31.2 31.2 31.2 at the vertex ( 18 5 , 24 5 ) \left( \frac{18}{5}, \frac{24}{5} \right) ( 5 18 , 5 24 ) .
5. (d) Reduce the matrix [ 5 3 8 0 1 1 1 − 1 0 ] \begin{bmatrix} 5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} 5 0 1 3 1 − 1 8 1 0 to normal form and hence find its rank. (5 marks) Answer :
To reduce the matrix to its normal form and find its rank, we perform row operations:
Given matrix:
[ 5 3 8 0 1 1 1 − 1 0 ] \begin{bmatrix} 5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} 5 0 1 3 1 − 1 8 1 0 Step-by-step reduction:
Subtract 5 times the second row from the first row (R1 → R1 - 5R2): [ 5 0 3 0 1 1 1 − 1 0 ] \begin{bmatrix} 5 & 0 & 3 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} 5 0 1 0 1 − 1 3 1 0 Swap the first and third rows to bring a non-zero entry to the pivot position: [ 1 − 1 0 0 1 1 5 0 3 ] \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 5 & 0 & 3 \end{bmatrix} 1 0 5 − 1 1 0 0 1 3 Subtract 5 times the first row from the third row (R3 → R3 - 5R1): [ 1 − 1 0 0 1 1 0 5 3 ] \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 5 & 3 \end{bmatrix} 1 0 0 − 1 1 5 0 1 3 Subtract 5 times the second row from the third row (R3 → R3 - 5R2): [ 1 − 1 0 0 1 1 0 0 − 2 ] \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix} 1 0 0 − 1 1 0 0 1 − 2 Now, the matrix is in row echelon form (REF). To find the rank, count the number of non-zero rows:
Since there are 3 non-zero rows, the rank of the matrix is 3 3 3 .
Therefore, the reduced row echelon form (RREF) of the matrix is [ 1 − 1 0 0 1 1 0 0 − 2 ] \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix} 1 0 0 − 1 1 0 0 1 − 2 and its rank is 3 3 3 .